Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/986 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRíos R., Carlos A.-
dc.contributor.authorMantilla F., Luis C.-
dc.contributor.authorCastellanos A., Oscar M.-
dc.date.accessioned2021-11-15T15:06:08Z-
dc.date.available2021-11-15T15:06:08Z-
dc.date.issued2017-06-30-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/986-
dc.description.abstractLas rocas metamórficas de la formación Silgará (sensu lato), de edad pre-Devónico, aflorantes en la región central del macizo de Santander (Cordillera Oriental de Colombia), presentan venas hidrotermales de cuarzo y cianita ligeramente boudinadas, paralelas a la foliación metamórfica regional. Estas venas se consideran manifestaciones excepcionales, tanto por su restringida distribución en el contexto del Macizo de Santander, como por su composición y génesis. Los cristales de cianita se observan, 1) en la proximidad del contacto con las rocas metapelíticas encajantes (afectadas por metamorfismo en facies anfibolita, zona de la estaurolita-cianita), con una orientación paralela a la foliación metamórfica, lo cual indica un crecimiento progresivo durante la apertura de la vena, y 2) hacia el centro de la vena, exhibiendo una orientación al azar, lo cual sugiere un crecimiento sin un control de esfuerzos significativo. Con base en las relaciones litológicas y los estudios paragenéticos, es posible sugerir que el origen de estas venas hidrotermales se relaciona con la circulación o el escape de fluidos propios de eventos magmático-hidrotermales de edad Ordovícico.spa
dc.description.abstractThe metamorphic rock of the Silgará formation (sensu lato), of pre-Devonian age, cropping out at the central region of the Santander massif (Colombian Eastern Cordillera), presents slightly boudinated hydrothermal quartz and kyanite veins parallel to the regional metamorphic foliation. These veins are considered as exceptional manifestations due to their restricted distribution in the context of the Santander Massif and their composition and genesis. Kyanite crystals are observed, 1) in the proximity to the contact with the wall metapelitic rocks (affected by amphibolite facies metamorphism, staurolite-kyanite zone), showing a direction parallel to the metamorphic foliation, which indicates a progressive growth during the opening of the vein, and 2) toward the center of the vein, exhibiting random orientation, which suggests a growth control without significant efforts. Based on lithological relationships and paragenetic studies, it is possible to suggest that the formation of these hydrothermal veins is related to the circulation or scape of hydrothermal fluids typical of magmatic- hydrotermal events of Ordovician? age.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titlePetrogénesis de venas de cuarzo y cianita en rocas metapelíticas de la formación Silgará, región central del macizo de Santander en los Andes colombianosspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAgue, J.J. (1994a). Mass transfer during Barrovian metamor-phism of pelites, south-central Connecticut. I: evidence for changes in composition and volume. American Journal of Science, 294(8): 989-1057spa
dcterms.referencesAgue, J.J. (1994b). Mass transfer during Barrovian metamorphism of pelites, south-central Connecticut. II: channelized fluid flow and the growth of staurolite and kyanite. American Journal of Science, 294(8): 1061-1134spa
dcterms.referencesAgue, J.J. (1995). Deep-crustal growth of quartz, kyanite and garnet into large-aperture, fluid-filled fractures, north-eastern Connecticut, USA. Journal of Metamorphic Geology, 13 (2): 299-314spa
dcterms.referencesAllaz, J., Maeder, X., Vannay, J. & Steck, A. (2005). Formation of aluminosilicate-bearing quartz veins in the Simano nappe (Central Alps): structural, thermobarometric, and oxygen isotope constraints. Schweizerische Mineralogische und Petrographische Mitteilungen, 85(2-3): 191-214spa
dcterms.referencesBeane, R.J. & Field, C.K. (2007). Kyanite deformation in white-schist of the ultrahigh-pressure metamorphic Kokchetav Massif, Kazakhstan. Journal of Metamorphic, 25(2): 117-128spa
dcterms.referencesBeitter, T., Wagner, T. & Markl, G. (2008). Formation of kyanite–quartz veins of the Alpe Sponda, Central Alps, Switzerland: implications for Al transport during regional metamorphism. Contributions to Mineralogy and Petrology, 156(6): 689-707spa
dcterms.referencesBoinet, T., Bourgois, J., Bellon, H. & Toussaint, J. (1985). Age et repartition du magmatism Premesozoique des Andes de Colombie. Comptes rendus hebdomadaires des séaces de L’Académie des Sciences. Serie D: SciencesNaturalles, 300(II): 445-450spa
dcterms.referencesBotello, F., Mantilla, L.C. & Colegial, J.D. (2014). Edad U-Pb en zircones y contexto tectónico de formación del Granito de Durania (Macizo de Santander, Colombia). Memorias XI Semana Técnica de Geología y I Geosciences anual meeting. UIS. Bucaramanga, 11 al 15 de Agosto de 2014spa
dcterms.referencesBucholz, C.E. & Ague, J.J. (2010). Fluid flow and Al transport during quartz-kyanite vein formation, Unst, Shetland Islands, Scotland. Journal of Metamorphic Geology, 28(1): 19-39spa
dcterms.referencesCarmichael, D. (1969). On the mechanism of prograde metamor-phic reactions in quartz-bearing pelitic rocks. Contribution to Mineralogy and Petrology, 20(3): 244-267spa
dcterms.referencesCampos, N. (1999). Estudio Mineralógico y Petrográfico de las Metamorfitas al Occidente del Municipio de Mutiscua (Norte de Santander). Tesis de Pregrado, Universidad Industrial de Santander, Bucaramanga (Colombia)spa
dcterms.referencesCastellanos, O.M. (2001). Chemical composition of the rock-forming minerals in the Silgará formation and P-T condi-tions in the Mutiscua area, Santander Massif, Eastern Cordillera, Colombia. Unpublished Master Thesis, Shimane University, Matsue (Japan)spa
dcterms.referencesCastellanos, O.M., Ríos, C.A. & Takasu A. (2004). Chemically sector-zoned garnets in the metapelitic rocks of the Silgará Formation in the central Santander Massif, Colombian Andes: occurrence and growth history. Boletín de Geología, 26(1): 91-98.spa
dcterms.referencesCastellanos, O.M., Ríos, C.A. & Takasu A. (2008). A new approach on the tectonometamorphic mechanisms asso-ciated with P–T paths of the Barrovian-type Silgará Formation at the Central Santander Massif, Colombian Andes. Earth Sciences Research Journal, 12(2): 125-155spa
dcterms.referencesCaviedes, M.A. & Gómez, R.E. (2006). Petrogénesis de venas hidrotermales con cianita en rocas metapelíticas de la Formación Silgará, región central del Macizo de Santander. Tesis de Pregrado, Universidad Industrial de Santander, Bucaramanga (Colombia)spa
dcterms.referencesCesare, B. (1994). Synmetamorphic veining: origin of andalusite-bearing veins in the Vedrette di Ries contact aureole, eastern Alps, Italy. Journal of Metamorphic Geology, 12(5): 643-653spa
dcterms.referencesChinner, G.A. (1961). The origin of sillimanite in Glen Clova, Angus. Journal of Petrology, 2(3): 312-323spa
dcterms.referencesClavijo, J. (1994). Mapa geológico generalizado del Departamento de Norte de Santander, Memoria explicativa. Informe interno INGEOMINAS, 67pspa
dcterms.referencesCordani, U., Cardona, A., Jimenez, D., Liu, D. & Nutman, A. (2005). Geochronology of Proterozoic basement inliers in Colombian Andes: tectonic history of remnants of a fragmented grenville belt. In: terrane processes at margins of gondwana. Geological Society, London, Special Publications. Edited by Vaughan, A., Leat, P., and Pankhurst, R., 246: 329-346spa
dcterms.referencesEtheridge, M.A., Wall, V.J. & Cox, S.F. (1984). High fluid pressures during regional metamorphism and deformation: implications for mass transport and deformation mech-anisms. Journal of Geophysical Research, 89(6): 4344-4358spa
dcterms.referencesFerry, J.M. (1992). Regional metamorphism of the Waits River Formation, eastern Vermont: Delineation of a new type of giant metamorphic hydrothermal system. Journal of Petrology, 33(1): (4594)spa
dcterms.referencesFoster, C. (1986). Thermodynamic models of reactions in-volving garnet in sillimanite/staurolite schist. Mineralogical Magazine, 50: 427-439spa
dcterms.referencesGarcía, C.A., Ríos, C.A. & Castellanos, O.M. (2005). Medium-pressure metamorphism in the central Santander Massif, Eastern Cordillera, Colombian Andes: constraints for a collision model. Boletín de Geología, 27(2): 43-68.spa
dcterms.referencesGrant, J.A. (1986). The isocon diagram; a simple solution to Gresens’equation for metasomatic alteration. Economic Geology, 81(8): 1976-1982spa
dcterms.referencesJulivert, M. (1970). Cover and basement tectonics in the Cordillera Orientalof Colombia, South America, and a comparison with some other folded chains. Geological Society American Bulletin, 81: 3623-3643.spa
dcterms.referencesKerrick, D. (1990). The Al2SiO5 polymorphs. Reviews in Miner-alogy 22. Mineralogical Society of America, Washington, D.C., 406pspa
dcterms.referencesKretz, R. (1983). Symbols for rock-forming minerals. American Mineralogist, 68: 277-279spa
dcterms.referencesLentz, D.R. & Gregoire, C. (1995). Petrology and mass-balance constraints on major-, trace- and rare-earth-element mobility in porphyry-greisen alteration associated with epizonal True Hill granite, south-western New Brunswick, Canada. Journal of Geochemical Exploration, 52(3): 303-331spa
dcterms.referencesLang, H.D. & Dunn, G.R. (1990). Sequential porphyroblast growth during deformation in a low pressure metamorphic terrane, Orrs Island, Haspswell Neck, Maine. Journal of Metamorphic Geology, 8(2): 199-216spa
dcterms.referencesLarson, T.E. & Sharp, Z.D. (2003). Stable isotopic constraints on the Al2SiO5 “triple point” rocks from the Proterozoic Priest pluton contact aureole, New Mexico, USA. Journal of Metamorphic Geology, 21(8): 785-798spa
dcterms.referencesMantilla, L.C., Ríos, C.A., Gélvez, J.R., Márquez, R.E., Ordoñez, J.C. & Cepeda, S. (2003). Nuevas evidencias acerca de la presencia de una banda de cizallamiento en la Formación Silgará del sector Aratoca-Pescadero (Macizo de Santander). Boletín de Geología, 25(40): 81-90spa
dcterms.referencesMantilla, L.C., Bissig, T., Cottle, J.M. & Hart, C. (2012). Remains of early Ordovician mantle-derived magmatism in the Santander Massif (Colombian Eastern Cordillera). Journal of South American Earth Sciences, 38: 1-12spa
dcterms.referencesMantilla, L.C., García, C.A. & Valencia, V. (2016). Propuesta de escisión de la denominada ‘Formación Silgará’ (Macizo de Santander, Colombia) a partir de edades U-Pb en circones detríticos. Boletín de Geología, 38(1): 33-50spa
dcterms.referencesMasters, R.L. & Ague, J.J. (2005). Regional-scale fluid flow and element mobility in Barrow’s metamorphic zones, Stonehaven, Scotland. Contributions to Mineralogy and Petrology, 150: 1-18spa
dcterms.referencesMcLelland, J., Morrison, J., Selleck, B., Cunningham, B., Olson, C. & Schmidt, K. (2002). Hydrothermal alteration of late- to post- tectonic Lyon Mountain granitic gneiss, Adirondack Mountains, New York: origin of quartz-sillimanite segregations, quartz-albite lithologies, and asso-ciated Kiruna-type low-Ti-Fe-oxide deposits. Journal of Metamorphic Geology, 20(1): 175-190spa
dcterms.referencesNabelek, P. (1997). Quartz-sillimanite leucosomes in high-grade schists, Black Hills, South Dakota: a perspective on the mobility of Al in high-grade metamorphic rocks. Geology, 25(11): (995-998)spa
dcterms.referencesOkayuma-Kusunose, Y. (1994). Phase relations in andalusite-sillimanite type Fe-rich metapelites; Tono contact metamor-phic aureole, Northeast Japan. Journal of Metamorphic Geology, 12(2): 153-168spa
dcterms.referencesPutlitz, B., Valley, J.W., Matthews, A. & Katzir, Y. (2002). Oxygen isotope thermometry of quartz– Al2SiO5 veins in high-grade metamorphic rocks on Naxos island (Greece). Contributions to Mineralogy and Petrology, 143(3): 350-359spa
dcterms.referencesRestrepo-Pace, P.A. & Cediel, F. (2010). Northern South America basement tectonics and implications for paleocontinental reconstructions of the Americas. Journal of South American Earth Sciences, 29: 764-771spa
dcterms.referencesRoyero, J. & Clavijo, J. (1994). Mapa Geológico generalizado departamento de Santander. Escala 1: 400.000. Informe INGEOMINAS, 92pspa
dcterms.referencesRyan, N.A. (2010). Microstructures of a deformed kyanite–quartz vein of the Raft River Mountains in northwest Utah, USA. Undergraduate Thesis of Bachelor of Arts, Carleton College, Northfield, Minnesotaspa
dcterms.referencesSilva, J.C., Sial, A.N., Ferreira, V.P. & Estrada, J.J. (2004). C-isotope stratigraphy of a Vendian carbonate succession in northwestern Andes: Implications for the NW Andes. In: IV Reunión Ciencias de la Tierra, Querétaro (México), Abstracts, vol. 198spa
dcterms.referencesSpear, J.A. (1982). Metamorphism of pelitic rocks of the Snyder Group in the contact aureole of the Kiglapait layered intrusión, Labrador: effect of buffering partial pressures of wáter. Canadian Journal of Earth Sciences, 19(10): 1888-1909spa
dcterms.referencesStout, M.Z., Crawford, M.L. & Ghent, E.D. (1986). Pressure-temperature evolution of fluid compositions of Al2SiO5-bearing rocks, Mica Creek, B.C. in light of fluid inclusion data and mineral equilibrium. Contributions to Mineralogy and Petrology, 92(2): 236-247.spa
dcterms.referencesThompson, A.B. (1975). Calc-silicate diffusion zones between marble and pelitic schist. Journal of Petrology, 16(1): 314-346spa
dcterms.referencesVan der Lilej, R., Spikings, R., Ulianov, A., Chiaradia, M. & Mora, A. (2016). Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Research, 31:271-294spa
dcterms.referencesVerdes, G., Gout, R. & Castet, S. (1992). Thermodynamic properties of the aluminate ion and of bayerite, boemite, diaspore, and gibbsite. European Journal of Mineralogy, 4(4): 767-792.spa
dcterms.referencesWard, D.E., Goldsmith, R., Cruz, B.J., Jaramillo, C.L. & Vargas, L.R. (1970). Mapa Geológico del Cuadrángulo H-13, Pamplona, Colombia. Ingeominasspa
dcterms.referencesWard, D.E., Goldsmith, R., Cruz, B.J., Jaramillo, C.L. & Restrepo, H. (1973). Geología de los Cuadrángulos H-12, Bucaramanga y H-13, Pamplona, Departamento de Santander. U.S. Geological Survey e Ingeominas. Boletín Geológico, XXI(1-3): 1-132spa
dcterms.referencesWidmer, T. & Thompson, A. (2001). Local origin of high pressure vein material in eclogite facies of the Zermatt-Saas Zone, Switzerland. American Journal of Science, 301(7): 627-656.spa
dcterms.referencesWhitney, D.L. & Dilek, Y. (2000). Andalusite-sillimanite-quartz veins as indicators of low-pressure-high-temperature defor-mation during late-stage unroofing of a metamorphic core complex, Turkey. Journal of Metamorphic Geology, 18(1): 59-66spa
dcterms.referencesYardley, B.W.D. (1975). On some quartz-plagioclase veins in the Connemara schists, Ireland. Geological Magazine, 112: 183-190spa
dcterms.referencesYardley, B.W.D., Leake, B.E. & Farrow, C.M. (1980). The metamorphism of Fe-rich pelites from Connemara, Ireland. Journal of Petrology, 21(2): (365-399).spa
dcterms.referencesYardley, B.W.D. (1986). Fluid migration and veining in the Connemara Schists, Ireland. In J.V. Walther and B.J. Wood, Eds., Fluid-rock Interactions During Metamorphism: Springer-Verlag, New York p. 109-131spa
dcterms.referencesYardley, B.W.D. & Bottrell, S.H. (1992). Silica mobility and fluid movement during metamorphism of the Connemara schists, Ireland. Journal of Metamorphic Geology, 10(3): 453-464. http://www.sfu.ca/~marshall/sem/mineral.htm. Mineral Energy Dispersive Spectra (EDS) Consulted on 15 September, 2014spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.385-
dc.subject.proposalMacizo de Santanderspa
dc.subject.proposalSantander massifeng
dc.subject.proposalFormación Silgaráspa
dc.subject.proposalSilgará formationeng
dc.subject.proposalVenas hidrotermalesspa
dc.subject.proposalHydrothermal veinseng
dc.subject.proposalCianitaspa
dc.subject.proposalKyaniteeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume41spa
dc.relation.citationstartpage230spa
dc.relation.citationendpage243spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.coverage.regionMacizo de Santander, Andes colombianos-
dc.relation.citationissue159spa
dc.type.contentDataPaperspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
9. Petrogénesis de venas de cuarzo y cianita en rocas metapelíticas de la formación Silgará.pdfCiencias de la Tierra912.36 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons