Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/997 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPájaro Payares, Adolfo A.-
dc.contributor.authorEspinosa Fuentes, Eduardo A.-
dc.contributor.authorColpas Castillo, Fredy-
dc.contributor.authorRodriguez Ruiz, Johana-
dc.contributor.authorFernandez Maestre, Roberto-
dc.contributor.authorMeza Fuentes, Edgardo-
dc.date.accessioned2021-11-15T15:13:06Z-
dc.date.available2021-11-15T15:13:06Z-
dc.date.issued2017-10-09-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/997-
dc.description.abstractLos ácidos húmicos se producen por la descomposición de la materia orgánica de los suelos y por la oxidación de carbones minerales. En este estudio se analizó mediante superficies de respuesta el efecto de la oxidación en la extracción de ácidos húmicos de un carbón colombiano. Las variables de oxidación estudiadas fueron las siguientes: tamaño de partícula (0,063, 0,106 y 0,150 mm), concentración del agente oxidante (permanganato de potasio (KMnO4): 0,010, 0,020 y 0,050 M) y tiempo de oxidación (30, 60 and 90 minutos). El grado de oxidación se verificó con espectroscopia infrarroja. La oxidación incrementó los grupos oxigenados en la matriz carbonácea debido, principalmente, a la oxidación de componentes alifáticos. Se obtuvieron porcentajes de extracción superiores a 24 % al usar partículas de 0,063 mm y KMnO4 con 0,020 M.spa
dc.description.abstractHumic acids are produced by decomposition of organic soil material and from oxidation of mineral coals. In this study, the effect of oxidation and the yield of humic acids extracted from a sample of Colombian mineral coal were studied by response surface methodology (RSM). The variables used were: particle size (0.063, 0.106 and 0.150 mm), concentration of the oxidizing agent (KMnO4: 0.010, 0.020 and 0.050 M) and oxidation time (30, 60 and 90 minutes). The degree of oxidation was verified by infrared spectroscopy. Oxidation increased oxygen groups in the carbonaceous matrix, mainly due to oxidation of aliphatic components. Extraction yields above 24% were obtained with 0.063 mm particle size and 0.020 M KMnO4.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleEffect of particle size and oxidant concentration in the yield of humic acids from mineral coal using response surface methodologyspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAnillo-Correa, R., Colpas-Castillo, F., Meza-Fuentes, E. (2013). Aumento del contenido de ácidos húmicos en un carbón de bajo rango a través de la oxidación con aire y con peróxido de hidrogeno o ácido nítrico. Quim. Nova 2013. 36: 387-392spa
dcterms.referencesBarros, B., Scarminio, I., Bruns, E (1996).Planejamentoe Otimização de Experimentos (Second edition). Edit. Unicamp, Campinas, Brasil. p. 149-296spa
dcterms.referencesBrunetti, G., Plaza, C., Clapp, C., Senesi, N. (2007). Composi-tional and functional features of humic acids from organic amendments and amended soils in Minnesota, USA. Soil. Biol. Biochem. 39: 1355-136spa
dcterms.referencesButuzova, L., Krzton, A., Bazarova, O. (1998). Structure and properties of humic acids obtained from thermo-oxidised brown coal. Fuel. 77: 581-584spa
dcterms.referencesCalemma, V., Iwansski, P., Rausa, R., Girardi, E. (1994). Changes in coal structure accompanying the formation of regen-erated humic acids during air oxidation. Fuel. 73: 700-707spa
dcterms.referencesEspinosa-Fuentes, E., Colpas-Castillo, F., Meza-Fuentes, E.(2017). Estudio teórico de las interacciones de dos modelos de ácidos húmicos con los cationes Al3+, Ca2+, Mg2+, Zn2+, K+ y NH4+ a un nivel de cálculo dft y un modelo de solva-tación PCM. Quim. Nova. 40: 299-30spa
dcterms.referencesGomes de Melo, B., Lopes, F., Andrade, M. (2016). Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C.62: 967-974spa
dcterms.referencesGonsalvesh, L., Marinov, S., Stefanova, M., Carleer, R., Yperman, J. (2012). Organic sulphur alterations in biodesulphurized low rank coals. Fuel. 97: 489-503spa
dcterms.referencesJones, M. & Bryan N. (1998). Colloidal properties of humic substances. Adv. Colloid. Interface Sci. 78: 1-48spa
dcterms.referencesKawasaki, S., Maie, N., Kitamura, S., Watanabe, A. (2008). Effect of organic amendment on amount and chemical characteristics of humic acids in upland field soils. Eur. J. Soil Sci. 59: 1027-1037spa
dcterms.referencesKlučáková, M. & Kalina, M. (2015). Diffusivity of Cu(II) ions in humic gels–influence of reactive functional groups of humic acids. Colloids. Surf., A: Physicochem. Eng. Aspects.483:162-170spa
dcterms.referencesKlučáková, M. & Věžníková, K. (2017). Micro-organization of humic acids in aqueous solutions. J. Mol. Struc. 1144: 30-40spa
dcterms.referencesKumada, K. (1987). Chemistry of Soil Organic Matter. Develop-ments. Soil. Sci. 17: 17-33spa
dcterms.referencesKurková, M., Klika, Z., Kliková, C., Havel, J (2004). Humic acids from oxidized coals I. Elemental composition, titra-tion curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infrared spectroscopy. Chemosphere. 54: 1237-1245spa
dcterms.referencesKwiatkowska, J., Provenzano, M., Senesi, N. (2008). Long term effects of a brown coal-based amendment on the properties of soil humic acids. Geoderma. 148: 200-205spa
dcterms.referencesLiang, L., Lv, J., Luo, L., Zhang, J., Zhang, S. (2011). Influences of surface-coated fulvic and humic acids on the adsorption of metal cations to SiO2 nanoparticles. Colloids. Surf., A: Physicochem. Eng. Aspects. 389: 27-32spa
dcterms.referencesLobartini. J., Gingle, A., Pape, C., Himmelsbach, D. (1992). The geochemical nature and agricultural importance of commercial humic matter. Sci. Total. Environ. 113: 1-15spa
dcterms.referencesMacCarthy, P. (2001) The principles of humic substances.Soil Sci. 166: 738-751spa
dcterms.referencesMartínez-Fernández, D., Arco-Lázaro, E., Bernal, M., Clemente, R. (2014). Comparison of compost and humic fertiliser effects on growth and trace elements accumulation of native plant species in a mine soil phytorestoration experiment. Ecol. Eng. 73: 588-597spa
dcterms.referencesMorgenthaler, S., Schumacher, M. (1999). Robust analysis of a response surface design. Chemometr. Intell. Lab. 47: 127-141spa
dcterms.referencesNebbioso, A., Piccolo, A. (2012). Advances in humeomics: Enhanced structural identification of humic molecules after size fractionation of a soil humic acid. Anal. Chim. Acta.720: 77-90.spa
dcterms.referencesRaposo, J., Villanueva, U., Olivares, M., Madariaga, J. (2016). Determination of humic substances in sediments by focused ultrasound extraction and ultraviolet visible spectroscopy. Microchem. J. 128: 26-33.spa
dcterms.referencesRashid, M., Price, N., Gracia, M., O’Shea K. (2016). Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Res. 123: 153-160spa
dcterms.referencesRenka, R. & Cline, K. (1984). A triangle-based C1 interpolation method. J. Math. 14: 223-238spa
dcterms.referencesRíos-León, I., Solano-Polo, C., Rodríguez-Ruiz, J., Espinosa-Fuentes, E., Meza Fuentes, E. (2017). Estudio a través de espectroscopia infrarroja y termogravimetría del efecto de la temperatura en hidrotalcitas de níquel y aluminio. Dyna. 84: 9-16.spa
dcterms.referencesSaldaña-Robles, A. Saldaña-Robles, N. Saldaña-Robles, A.L., Damián-Ascencio, C. Rangel-Hernández, V.H. Guerra-Sánchez, R. (2017). Arsenic removal from aqueous solu-tions and the impact of humic and fulvic acids. J. Clean. Prod. 159: 425-43spa
dcterms.referencesShaker, M. & Albishri H. (2014). Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid. Chemosphere. 111: 587-595spa
dcterms.referencesSimeoni, M., Batts, B., McRae, C. (2003). Effect of groundwater fulvic acid on the adsorption of arsenate by ferrihydrite and gibbsite. Appl. Geochem. 18: 1507-1515spa
dcterms.referencesSkybová, M., Turčániová, Ľ., Čuvanová, S., Zubrik, A., Hredzák, S., Hudymáčová, Ľ. (2007). Mechanochemical activation of humic acids in the brown coal. J. Alloy. Compd. 434: 842-845spa
dcterms.referencesStevenson, F. (1994). Humus Chemistry: Genesis, Composition, Reactions. First edition. New York: John Wiley & Sons, United States. p. 1-19spa
dcterms.referencesTang, K., Escola M., Ooi G., Kaarsholm K., Bester K., Andersen H. (2017). Influence of humic acid addition on the degradation of pharmaceuticals by biofilms in effluent wastewater. Int J Hyg Envir Heal. 220: 604-610spa
dcterms.referencesTaraba, B. (1990). Reversible and irreversible interaction of oxygen with coal using pulse flow calorimetry. Fuel. 69: 1191-1199spa
dcterms.referencesTejeda-Agredano, M., Mayer, P., Ortega-Calvo, J. (2014). The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime. Environ. Pollut. 184: 435-442spa
dcterms.referencesVan Krevelen D.W. (1993). Coal: Typology–Physics–Chemistry-Constitution. Edit. Elsevier, Amsterdam. p. 249-292spa
dcterms.referencesVersan-Kok, M. (2001). An Investigation into the combustion curves of lignites. J. Thermal. Anal. Calorimetry. 64: 1319-1323spa
dcterms.referencesVersan-Kok, M. (2012). Simultaneous thermogravimetry–calo-rimetry study on the combustion of coal samples: Effect of heating rate. Energy. Convers. Manage. 53: 40-44spa
dcterms.referencesWijaya, N. & Zhang, L. (2012). Generation of ultra-clean fuel from Victorian brown coal–Synchrotron XANES study on the evolution of sulphur in Victorian brown coal upon hydrothermal upgrading treatment and thermal pyrolysis. Fuel. 99: 217-225spa
dcterms.referencesWood, G., Kehn, T., Carter, M., Culbertson, W. (1983). Coal Resource Classification System of the U.S. Geological Survey, Geological Survey: Denver, United Statesspa
dcterms.referencesYang, K., Miao, G., Wu. W., Lin, D., Pan, B., Wu, F., Xing, B. (2015). Sorption of Cu2+ on humic acids sequentially extracted from a sediment. Chemosphere. 138: 657-663spa
dcterms.referencesZhang, S., Yuan, L., Li, W., Lin, Z., Li, Y., Hu, S., Zhao B.(2017). Characterization of pH-fractionated humic acids derived from Chinese weathered coal. Chemosphere. 166: 334-342spa
dcterms.referencesZhiyuan, Y., Liang, G., Pan, R. (2012). Preparation of nitric humic acid by catalytic oxidation from Guizhou coal with catalysts. Int. J. Mining. Sci. Tech. 22: 75-78spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.477-
dc.subject.proposalCarbon bituminosospa
dc.subject.proposalBituminous coaleng
dc.subject.proposalÁcidos húmicosspa
dc.subject.proposalHumic acidseng
dc.subject.proposalOxidaciónspa
dc.subject.proposalOxidation processeng
dc.subject.proposalSuperficie de respuestaspa
dc.subject.proposalSurface responseeng
dc.subject.proposalDiseño factorialspa
dc.subject.proposalFactorial designeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume41spa
dc.relation.citationstartpage361spa
dc.relation.citationendpage369spa
dc.publisher.placeBogotá D.C., Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue160spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
10. Effect of particle size and oxidant concentration.pdfCiencias químicas2.14 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons