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Usando propiedades estructurales de los polinomios ortogonales clásicos (Hermite, La-
guerre, Jacobi y Bessel), se implementa el algoritmo de Leverrier-Fadeev para obtener el
polinomio caracteŕıstico de una matriz cuadrada de elementos complejos.
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Abstract

Using structural properties of classical orthogonal polynomials (Hermite, Laguerre, Jaco-
bi, and Bessel), an implementation of Leverrier-Fadeev algorithm to obtain the characteristic
polynomial of a square matrix with complex entries is presented.

Key words: Characteristic Polynomial, Transfer Functions, Orthogonal Polynomials,
Classical Linear Functionals.

1. Introduction

For a given matrix A ∈ C
n×n an algorithm attribu-

ted to Leverrier, Fadeev, and others, allows the simul-
taneous determination of the characteristic polynomial
of A and the adjoint matrix of sI −A, where I denotes

the identity matrix in Cn×n. Indeed, if

p(s) = det(sI −A) = sn +
n−1∑
k=0

an−ks
k

denotes the characteristic polynomial of A and
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Ã(s) = Adj (sI −A) = sn−1I +
n−2∑
k=0

skBn−k−1

denotes the adjoint matrix of sI − A, and taking into
account

Ã(s) = p(s)(sI −A)−1,

then the coefficients (ak) and the matrices (Bk) can be
generated from

a1 = −tr A, B1 = A+ a1I,

ak = − 1
k tr (ABk−1), Bk = akI +ABk−1,

(1.1)

for k = 2, . . . , n− 1. Here tr A denotes the trace of the
matrix A.

Notice that (1.1) can be read as follows (See [3])


(sI −A)Ã(s) = p(s)I,

dp(s)
ds

= tr Ã(s).
(1.2)

Despite the little value from a numerical point of view,
this algorithm is useful for theoretical purposes as well
as for the applications in linear control theory. More

precisely,
1
p(s)

Ã(s) is the transfer function of a conti-

nuous time linear system with n inputs and n outputs.

The algorithm takes into account the representation
of the characteristic polynomial and the adjoint matrix
in terms of the canonical basis

{
sk
}n

k=0
in the linear spa-

ce of polynomials with complex coefficients and degree
at most n.

From a computational point of view the accuracy of
the algorithm using an orthogonal polynomial system
is improved. For some particular cases of orthogonal
polynomials S. Barnett [1] gave an implementation of
the algorithm. The key idea is the relation (1.2) as well
as the expression of the derivative of the polynomial
Pk, k = 1, . . . , n, in terms of the family {Pk}nk=0. The
aim of our contribution is to present a general approach
for families of classical orthogonal polynomials (Hermi-
te, Laguerre, Jacobi, and Bessel) taking into account a
characterization of such families obtained in [4]. Indeed
it allows to give an expression of Pk as a linear combina-
tion of P ′

k+1, P
′
k, and P ′

k−1. Thus we can show a very
simple implementation of the Leverrier algorithm, whe-
re parameters associated with the three-term recurrence
relation play the main role.

The structure of the paper is the following. In the
section 2 we summarize the basic properties of classi-
cal orthogonal polynomials. In the section 3 we present
the adapted version of Leverrier algorithm for bases of
classical orthogonal polynomials, and we analyze it for
each family of classical orthogonal polynomials. In the
section 4, some examples are tested.

2. Classical Orthogonal Polynomials

Let u be a linear functional in the linear space IP of
polynomials with complex coefficients. If 〈 , 〉 denotes
the duality bracket then cn = 〈u, xn〉 is said to be the
moment of order n associated with the linear functional
u.

The linear functional u is said to be quasi-definite
[2] if the principal submatrices of the Hankel matrix
H = (ci+j)

∞
i,j=0 are non-singular. In such a case, there

exists a unique sequence of monic polynomials {Pn}∞n=0

such that

(i) 〈u, xkPn〉 = 0, k = 0, 1, . . . , n− 1.
(ii) 〈u, xnPn〉 �= 0.
(iii) degPn = n.

The sequence {Pn}∞n=0 is said to be a sequence of mo-
nic orthogonal polynomials (SMOP) with respect to u.
It is very well known that {Pn}∞n=0 satisfies a three-term
recurrence relation

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x), (2.1)

n = 1, 2, . . . with γn �= 0.

The converse is also true and this result is due to
several authors despite the fact is known as Favard’s
Theorem [2].

If q(x) denotes a polynomial, then a new linear func-
tional ũ = q(x)u can be introduced as follows

〈ũ, p(x)〉 = 〈u, p(x)q(x)〉 (2.2)

for every p ∈ IP.

On the other hand, as for a distribution, the de-
rivative of the linear functional u,Du, is given by
〈Du, p(x)〉 = −〈u, p′(x)〉, p ∈ IP.

Definition 2.1. A linear functional u is said to be clas-
sical if there exist polynomials φ, ψ, with degφ � 2
and degψ = 1 such that

D(φu) = ψu. (2.3)

Up to a linear change of variables, four cases appear
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(i) φ(x) = 1. This leads to Hermite linear functional
with ψ(x) = −2x.

(ii) φ(x) = x. This leads to Laguerre linear functional
with ψ(x) = −x+ α+ 1.

(iii) φ(x) = x2 − 1. This yields the Jacobi linear func-
tional with ψ(x) = −(α+ β + 2)x+ β − α.

(iv) φ(x) = x2. This yields the Bessel linear functional
with ψ(x) = (α+ 2)x+ 2.

Theorem 2.2.(see [4]) If {Pn}∞n=0 is the SMOP associa-
ted with u, then the following statements are equivalent

(i) u is a classical linear functional.

(ii) {Qn}∞n=0, with Qn =
P ′

n+1

n+ 1
, is a SMOP.

(iii) Pn = Qn + rnQn−1 + snQn−2.
(iv) φ(x)Qn = anPn+2 + bnPn+1 + cnPn, with cn �= 0.

Tabla 1. Coefficients in the three-term recurrence relation (2.1)

βn γn

Hermite 0
n

2

Laguerre 2n+ α+ 1 n(n+ α)

Jacobi
β2 − α2

(2n+ α+ β)(2n+ α+ β + 2)
4n(n+ α)(n+ β)(n+ α+ β)

(2n+ α+ β − 1)(2n+ α+ β)2(2n+ α+ β + 1)

Bessel − 2α
(2n+ α)(2n+ α+ 2)

− 4n(n+ α)
(2n+ α− 1)(2n+ α)2(2n+ α+ 1)

Tabla 2. Coefficients in the relation of the Theorem 2.2 (iii)

rn sn

Hermite 0 0

Laguerre n 0

Jacobi
2n(α− β)

(2n+ α+ β)(2n+ α+ β + 2)
− 4n(n− 1)(n+ α)(n+ β)

(2n+ α+ β − 1)(2n+ α+ β)2(2n+ α+ β + 1)

Bessel
4n

(2n+ α)(2n+ α+ 2)
4n(n− 1)

(2n+ α− 1)(2n+ α)2(2n+ α+ 1)

3. Leverrier-Fadeev Algorithm

Let {Pn}∞n=0 be a sequence of monic orthogonal polynomials. If we expand the characteristic polynomial p(s) and
the adjoint matrix Ã(s) of a matrix A ∈ C

n×n in terms of the above basis in the linear space of polynomials with
complex coefficients, then we get:

p(s) = Pn(s) +
n−1∑
k=0

ân−kPk(s), (3.1)
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Ã(s) = Pn−1(s)I +
n−2∑
k=0

Pk(s)B̂n−k−1. (3.2)

From the first identity in (1.2)

(sI −A)

(
Pn−1(s)I +

n−2∑
k=0

Pk(s)B̂n−k−1

)
= Pn(s)I +

n−1∑
k=0

ân−kPk(s)I. (3.3)

Taking into account the three-term recurrence relation (2.1) for the family {Pn}∞n=0, (3.3) becomes

Pn(s)I +
n−1∑
k=0

ân−kPk(s)I = [Pn(s) + βn−1Pn−1 + γn−1Pn−2] I − Pn−1(s)A+

n−2∑
k=0

(Pk+1(s) + βkPk(s) + γkPk−1(s)) B̂n−k−1 −
n−2∑
k=0

Pk(s)AB̂n−k−1 .

Equating coefficients of Pk in the previous expression we get

AB̂0 = −â1I + βn−1B̂0 + B̂1,

AB̂1 = −â2I + γn−1B̂0 + βn−2B̂1 + B̂2,
...

AB̂n−k−1 = −ân−kI + γk+1B̂n−k−2 + βkB̂n−k−1 + B̂n−k, k = 1, 2, . . . , n− 3,

AB̂n−1 = −ânI + γ1B̂n−2 + β0B̂n−1,

(3.4)

with B̂0 = I. In a matrix form

A



B̂n−1

...
B̂0


 = M



B̂n−1

...
B̂0




where M = Jn − [0|â]. Jn is the Jacobi matrix of di-
mension n associated with the SMOP {Pn}∞n=0 i. e.

Jn =




β0 γ1 0 · · · 0

1 β1 γ2

...

0
. . . . . . . . . 0

...
. . . γn−1

0 · · · 0 1 βn−1




and

â =




ân

ân−1

...
â1


 .

In the literature, the matrixM is called the comrade ma-
trix of A with respect to the orthogonal system {Pn}∞n=0.
His characteristic polynomial is p(s). In particular, we
get

tr A = −
n−1∑
j=0

βj − â1.

On the other hand, from the second relation in (1.2)
for n = 2, 3, . . . we have

P ′
n(s) +

n−1∑

k=0

ân−kP ′
k(s) = nPn−1(s) +

n−2∑

k=0

Pk(s)tr B̂n−k−1.

(3.5)

If {Pn}∞n=0 is a classical family then, from theorem
(iii), we get

Pk(s) =
P ′

k+1(s)
k + 1

+ rk
P ′

k(s)
k

+ sk

P ′
k−1(s)
k − 1

, k = 2, 3, . . .
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Thus, substitution in (3.5) yields

P ′
n(s) +

n−1∑
k=0

ân−kP
′
k(s) = P ′

n(s) + rn−1
n

n− 1
P ′

n−1(s) + sn−1
n

n− 2
P ′

n−2(s)+

+
n−2∑
k=2

(
P ′

k+1(s)
k + 1

+ rk
P ′

k(s)
k

+ sk

P ′
k−1(s)
k − 1

)
tr B̂n−k−1+

+tr B̂n−1P
′
1(s) + tr B̂n−2

(
P ′

2(s)
2

+ r1P
′
1(s)

)
.

Finally, equating the coefficients of P ′
k in both hand sides we get

(n− 1)â1 = nrn−1 + tr B̂1,

(n− 2)â2 = nsn−1 + rn−2tr B̂1 + tr B̂2,
...

kân−k = sk+1tr B̂n−k−2 + rktr B̂n−k−1 + tr B̂n−k, k = 1, 2, . . . , n− 3.

(3.6)

Thus, in order to obtain (âk) and (B̂k) we will pro-
ceed as follows.

First Step

â1 = n (βn−1 − rn−1)− tr A. (3.7)

Indeed, taking traces in the first equation of (3.4),
and (3.6){

tr A = −nâ1 + nβn−1 + tr B̂1,

(n− 1)â1 = nrn−1 + tr B̂1,

and (3.7) follows.

Second Step

B̂1 = AB̂0 + â1I − βn−1B̂0. (3.8)

Third Step

2â2 = (γn−1 − sn−1)tr B̂0 +

(βn−2 − rn−2)tr B̂1 − tr
(
AB̂1

)
. (3.9)

Indeed, from the second equation in (3.4) and (3.6){
tr
(
AB̂1

)
= n (γn−1 − â2) + βn−2tr B̂1 + tr B̂2,

tr B̂2 = (n− 2)â2 − nsn−1 − rn−2tr B̂1,

and (3.9) follows.

Fourth Step

B̂2 = AB̂1 + â2I − γn−1B̂0 − βn−2B̂1. (3.10)

Thus, for k = 1, 2, . . . , n− 3,

(n− k)ân−k = (βk − rk)tr B̂n−k−1 +

(γk+1 − sk+1)tr B̂n−k−2 − tr
(
AB̂n−k−1

)
,

(3.11)

as well as

B̂n−k = AB̂n−k−1 + ân−kI − γk+1B̂n−k−2 − βkB̂n−k−1.

These results follow from the expressions in (3.4) and
(3.6) for k = 1, . . . , n− 3.

Finally, taking traces in the last equation of (3.4) we
get

nân = β0tr B̂n−1 + γ1tr B̂n−2 − tr
(
AB̂n−1

)
.

As a conclusion we get

Theorem 3.1.

(i) For k = 0, 1, . . . , n− 1,

(n− k)ân−k = (βk − rk)tr B̂n−k−1 +

(γk+1 − sk+1)tr B̂n−k−2 − tr
(
AB̂n−k−1

)
,

(3.12)

with the convention B̂−1 = 0, r0 = 0, s1 = 0.

(ii) For k = 1, 2, . . . , n− 1

B̂n−k = AB̂n−k−1 + ân−kI −
γk+1B̂n−k−2 − βkB̂n−k−1. (3.13)
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The implementation of the algorithm is as follows

DATA: {βk}n−1
k=0 , {γk}nk=1, {rk}n−1

k=0 , {sk}nk=1.

Initial Condition: B̂−1 = 0, B̂0 = I.

1. From B̂n−k−2 and B̂n−k−1 taking into account
(3.12) we get ân−k.

2. From (3.13) we get B̂n−k.

END

and, for each family of monic orthogonal polynomials,
is given in below

3.1. Hermite Case. According to Theorem 3.1 we get
(i) (n− k)ân−k = k+1

2 tr B̂n−k−2 − tr
(
AB̂n−k−1

)
.

(ii)B̂n−k = AB̂n−k−1 + ân−kI − k + 1
2

B̂n−k−2. (3.14)

In particular, taking traces in (ii) and using (i) we get

tr B̂n−k = kân−k.

This is formula (3.12) in [1].

Furthermore, substituting in (i) we get

(n−k)ân−k =

(k + 1)(k + 2)
2

ân−k−2 − tr
(
AB̂n−k−1

)
, (3.15)

i.e.

tr
(
AB̂n−k−1

)
=

(k + 1)(k + 2)
2

ân−k−2 − (n− k)ân−k.

3.2. Laguerre Case. According to Theorem 3.1 we
get

(i) (n− k)ân−k = [(2k + α+ 1)− k] tr B̂n−k−1 +

(k+1)(k+α+1)tr B̂n−k−2−tr
(
AB̂n−k−1

)
i.e.

(n− k)ân−k = (k + α+ 1)tr B̂n−k−1 +

(k + 1)(k + α+ 1)tr B̂n−k−2 − tr
(
AB̂n−k−1

)
(ii) B̂n−k = AB̂n−k−1 + ân−kI −

(k + 1)(k + α+ 1)B̂n−k−2 −
(2k + α+ 1)B̂n−k−1 (3.16)

Taking traces in (ii) and using (i) we get

tr B̂n−k = kân−k − ktr B̂n−k−1.

Thus we deduce

(n− k)ân−k = (k + α+ 1)tr B̂n−k−1 +

(k + α+ 1)
[
(k + 1)ân−k−1 − tr B̂n−k−1

]
−

tr
(
AB̂n−k−1

)
,

i.e.

(n− k)ân−k = (k + α+ 1)(k + 1)ân−k−1 −
tr
(
AB̂n−k−1

)
. (3.17)

Up to a normalization this is the formula (3.23b) in [1],
when α = 0.

3.3. Jacobi Case. According to Theorem 3.1 we get

(n− k)ân−k =
(

β2 − α2

(2k + α+ β)(2k + α+ β + 2)
− 2k(α− β)

(2k + α+ β)(2k + α+ β + 2)

)
tr B̂n−k−1 +(

4(k + 1)(k + 1 + α)(k + 1 + β)(k + 1 + α+ β)
(2k + α+ β + 1)(2k + α+ β + 2)2(2k + α+ β + 3)

−
4k(k + 1)(k + 1 + α)(k + 1 + β)

(2k + α+ β + 1)(2k + α+ β + 2)2(2k + α+ β + 3)

)
tr B̂n−k−2 − tr

(
AB̂n−k−1

)
=

β − α
2k + α+ β + 2

tr B̂n−k−1 +
4(k + 1)(k + 1 + α)(k + 1 + β)

(2k + α+ β + 2)2(2k + α+ β + 3)
tr B̂n−k−2 − tr

(
AB̂n−k−1

)
.

On the other hand, if α = β then we are in the Gegenbauer case. The linear functional is symmetric and thus get

(n− k)ân−k =
4(k + 1)(k + 1 + α)2

(2k + 2α+ 2)2(2k + 2α+ 3)
tr B̂n−k−2 − tr

(
AB̂n−k−1

)

=
k + 1

2k + 2α+ 3
tr B̂n−k−2 − tr

(
AB̂n−k−1

)
,

(3.18)
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or, equivalently

tr B̂n−k = kân−k +
4k(k + 1)(k + 1 + α)2

(2k + 2α+ 1)(2k + 2α+ 2)2(2k + 2α+ 3)
tr B̂n−k−2,

i.e.

tr B̂n−k = kân−k +
k(k + 1)

(2k + 2α+ 1)(2k + 2α+ 3)
B̂n−k−2.

Notice that the symmetry of the linear functional yields an important simplification in our algorithm.

Furthermore

B̂n−k = AB̂n−k−1 + ân−kI − 4(k + 1)(k + α+ 1)2(k + 2α+ 1)
(2k + 2α+ 1)(2k + 2α+ 2)2(2k + 2α+ 3)

B̂n−k−2

= AB̂n−k−1 + ân−kI − (k + 1)(k + 2α+ 1)
(2k + 2α+ 1)(2k + 2α+ 3)

B̂n−k−2.

(3.19)

This is, up to the corresponding normalization, the formula (3.20) in [1] for α = 0.

3.4. Bessel Case. According to Theorem 3.1 we get

(n− k)ân−k =
−2α− 4k

(2k + α)(2k + α+ 2)
tr B̂n−k−1 − 4(k + 1)(2k + α+ 1)

(2k + α+ 1)(2k + α+ 2)2(2k + α+ 3)
tr B̂n−k−2 − tr

(
AB̂n−k−1

)

=
−2

2k + α+ 2
tr B̂n−k−1 − 4(k + 1)

(2k + α+ 2)2(2k + α+ 3)
tr B̂n−k−2 − tr

(
AB̂n−k−1

)
,

i.e.

(n− k)ân−k +
1

k + 1 +
α

2

tr B̂n−k−1 + tr
(
AB̂n−k−1

)
+

k + 1(
k + 1 +

α

2

)2

(2k + α+ 3)
tr B̂n−k−2 = 0, (3.20)

together with

B̂n−k = AB̂n−k−1 + ân−kI +
4(k + 1)(k + α+ 1)

(2k + α+ 1)(2k + α+ 2)2(2k + α+ 3)
B̂n−k−2 +

2α
(2k + α)(2k + α+ 2)

B̂n−k−1. (3.21)

4. Example

Consider

A =




1 −4 −1 −1
2 0 5 −4
−1 1 −2 3
−1 4 −1 6




which has characteristic polynomial

a(s) = s4 − 5s3 + 9s2 − 7s+ 2.

We apply the algorithm for each basis.

4.1. Hermite Basis. From (3.15), a1 = −tr A = −5,
and from (3.14)

B1 = a1I +A =



−4 −4 −1 −4

2 −5 5 −4
−1 1 −7 3
−1 4 −1 1


 .

Using (3.15), we get

a2 = 3− 1
2
tr (AB1) = 12,

and from (3.14)

B2 = a2I − 3
2
B0 +AB1 =




7
2 −1 −10 5
−9 −17

2 −33 3
5 9 55

2 −3
7 7 22 3

2


 .

Using again (3.15)

a3 = a1 − 1
3
tr (AB2) = −29

2
,

and from (3.14)
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B3 = a3I −B1 +AB2 =
1
2



−8 0 15 −12

4 11 49 −14
−1 −11 −39 11
−3 −8 −33 7


 .

Finally

a4 =
1
4
a2 − 1

4
tr (AB3) =

29
4
.

Hence, the characteristic polynomial of A is given by
(3.1) as

a(s) = H4(s) − 5H3(s) + 12H2(s) − 29

2
H1(s) +

29

4
H0(s).

4,2, Laguerre Basis. We consider the family {L0
n}∞n=0.

From (3.17), a1 = 16− tr A = 11, and from (3.16)

B1 = a1I − 7B0 +A =




5 −4 −1 −4
2 4 5 −4
−1 1 2 3
−1 4 −1 10


 .

Using (3.17), we get

a2 =
9
2
a1 − 1

2
tr (AB1) = 36,

and from (3.16)

B2 = a2I − 9B0 − 5B1 +AB1

=




4 −17 −14 −11
−1 −12 −13 −13

1 13 16 9
3 23 18 22


 .

Using again (3.17)

a3 =
4
3
a2 − 1

3
tr (AB2) = 35,

and from (3.16)

B3 = a3I − 4B1 − 3B2 +AB2

=



−2 −7 −4 −7
−4 −6 −1 −10

3 5 2 7
4 9 4 11


 .

Finally

a4 =
1
4
a3 − 1

4
tr (AB3) = 7.

Hence, the characteristic polynomial of A is given by
(3.1) as

a(s) = L0
4(s) + 11L0

3(s) + 36L0
2(s) + 35L0

1(s) + 7L0
0(s).

4.3. Jacobi Basis. We consider the family Pn = P
(0,0)
n

(Legendre Polynomials). From (3.18), a1 = −tr A =
−5, and from (3.19)

B1 = a1I +A =



−4 −4 −1 −4

2 −5 5 −4
−1 1 −7 3
−1 4 −1 1


 .

Using (3.18), we get

a2 =
6
7
− 1

2
tr (AB1) =

69
7
,

and from (3.19)

B2 = a2I − 9
35
B0 +AB1 =




13
5 −1 −10 5
−9 −47

5 −33 3
5 9 133

5 −3
7 7 22 3

5


 .

Using again (3.18)

a3 =
2
15

tr B1 − 1
3
tr (AB2) = −10,

and from (3.19)

B3 = a3I − 4
15
B1 +AB2

=
1
3



−10 2 23 −16

5 19 71 −19
−1 −17 −55 15
−4 −14 −49 10


 .

Finally

a4 =
1
12

tr B2 − 1
4
tr (AB3) =

26
5
.

Hence, the characteristic polynomial of A is given by
(3.1) as

a(s) = P4(s)− 5P3(s) +
69
7
P2(s)− 10P1(s) +

26
5
P0(s).

Now, We consider the family Un = P
( 1
2 , 1

2 )
n (Chebys-

hev Polynomials of the second kind). From (3.18),
a1 = −tr A = −5, and from (3.19)

B1 = a1I +A =



−4 −4 −1 −4

2 −5 5 −4
−1 1 −7 3
−1 4 −1 1


 .

Using (3.18), we get

a2 =
3
4
− 1

2
tr (AB1) =

39
4
,



47

and from (3.19)

B2 = a2I − 1
4
B0 +AB1 =




5
2 −1 −10 5
−9 −19

2 −33 3
5 9 53

2 −3
7 7 22 1

2


 .

Using again (3.18)

a3 =
1
9
tr B1 − 1

3
tr (AB2) = −19

2
,

and from (3.19)

B3 = a3I − 1
4
B1 +AB2

=
1
4



−12 4 31 −20

6 27 93 −24
−1 −23 −71 19
−5 −20 −65 13


 .

Finally

a4 =
1
16

tr B2 − 1
4
tr (AB3) =

35
8
.

Hence, the characteristic polynomial of A is given by
(3.1) as

a(s) = U4(s)− 5U3(s) +
39
4
U2(s)− 19

2
U1(s) +

35
8
U0(s).

4.4. Bessel Basis. We consider the family Bn = B0
n.

From (3.20), a1 = −1− tr A = −6, and from (3.21)

B1 = a1I +A =



−5 −4 −1 −4

2 −6 5 −4
−1 1 −8 3
−1 4 −1 0


 .

Using (3.20), we get

a2 = − 2
21
− 1

6
tr B1 − 1

2
tr (AB1) =

102
7
,

and from (3.21)

B2 = a2I +
1
35
B0 +AB1

=




33
5 3 −9 9

−11 −22
5 −38 7

6 8 168
5 −6

8 3 23 − 2
5


 .

Using again (3.20)

a3 = − 1
30

tr B1 − 1
6
tr B2 − 1

3
tr (AB2) = −289

15
,

and from (3.21)

B3 = a3I +
1
15
B1 +AB2

=
1
3



−21 1 52 −35

34 43 175 −32
−17 −43 −141 27
−26 −31 −116 10


 .

Finally

a4 = − 1
12

tr B2 − 1
4
tr B3 − 1

4
tr (AB3) =

84
5
.

Hence, the characteristic polynomial of A is given by
(3.1) as

a(s) = B4(s)− 6B3(s) +
102
7
B2(s)−
289
15

B1(s) +
84
5
B0(s).
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