Publicación:
Influence of process parameters on the size, morphology, and structure of magnetic nanoparticles obtained by chemical methods

dc.contributor.authorOrtiz Godoy, Nicolas
dc.contributor.authorAgredo Diaz, Dayi G.
dc.contributor.authorJunco, Jimmy R.
dc.contributor.authorLandínez Téllez, David A.
dc.contributor.authorRoa Rojas, Jairo
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.date.accessioned2021-12-10T08:49:43Z
dc.date.available2021-12-10T08:49:43Z
dc.date.issued2020-12-07
dc.description.abstractEn la última década los nanomateriales magnéticos se han utilizado ampliamente en el campo de la química, la física, la ingeniería y la medicina debido a sus propiedades ópticas, magnéticas y de conducción, y como agentes de contraste en resonancia magnética. Se ha evaluado su influencia en el tratamiento de tumores cancerosos y está despertando gran interés en sistemas de reparación ambiental como absorbentes magnéticos que atrapan partículas de metal y algunos contaminantes. En este estudio se analizó la influencia de los parámetros de proceso en la obtención de nanopartículas magnéticas bajo tres métodos de síntesis química. La caracterización morfológica se hizo por microscopía electrónica de barrido (SEM), su composición elemental se estudió mediante espectroscopia de energía dispersiva de rayos x (EDS), y su estructura, mediante difracción de rayos x (XRD). Los resultados evidenciaron una gran influencia del método de obtención, como se reflejó en la variabilidad del tamaño de las nanopartículas. Es de resaltar la obtención de partículas a escala nanométrica, con predominancia de estructuras Fe3O4 (magnetita) y Fe2O3 (maghemita), lo cual supondría propiedades de superparamagnetismo que abrirían el camino a un amplio abanico de aplicaciones futuras con su producción a bajo costo y de fácil acceso.spa
dc.description.abstractIn the last decade, magnetic nanomaterials have been widely used in the fields of chemistry, physics, engineering, and medicine due to their optical, magnetic, and conductive properties, and as contrast agents in magnetic resonance. Their influence in the treatment of cancerous tumors has been evaluated and has sparked great interest in its use in environmental repair systems such as magnetic absorbers that trap metal particles and some contaminants. Here we analyze the influence of process parameters to obtain magnetic nanoparticles under three chemical synthesis methods. Its morphological characterization was performed by scanning electron microscopy (SEM), its elemental composition by energy dispersive spectroscopy (EDS), and its structure by x-ray diffraction (XRD). Our results showed that the obtention method had a great influence as evidenced by the variability in nanoparticle sizes. It is worth highlighting that we obtained particles at a nanometric scale, especially Fe3O4 (magnetite) and Fe2O3 (maghemite) structures, with potential superparamagnetism properties that could open a wide range of future applications for the production of these materials at low cost and easy access.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1223
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1246
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.publisher.placeBogotá, Colombiaspa
dc.relation.citationendpage959spa
dc.relation.citationissue173spa
dc.relation.citationstartpage951spa
dc.relation.citationvolume44spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.subject.proposalNanopartículas magnéticasspa
dc.subject.proposalMagnetic nanoparticleseng
dc.subject.proposalMagnetitaspa
dc.subject.proposalMagnetiteeng
dc.subject.proposalMaghemitaspa
dc.subject.proposalMaghemiteeng
dc.subject.proposalMEBspa
dc.subject.proposalSEMeng
dc.subject.proposalDRXspa
dc.subject.proposalXRDeng
dc.titleInfluence of process parameters on the size, morphology, and structure of magnetic nanoparticles obtained by chemical methodsspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentDataPaperspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesArévalo, P., Isasi, J., Caballero, A. C., Marco, J. F., Martín-Hernández, F. (2017). Magnetic and structural studies of Fe3O4 nanoparticles synthesized via coprecipitation and dispersed in different surfactants. Ceramics International. 43 (13): 10333-10340. Doi: 10.1016/j. ceramint.2017.05.064spa
dcterms.referencesBakenecker, A. C., Ahlborg, M., Debbeler, C., Kaethner, C., Buzug, T. M., Lüdtke-Buzug, K. (2020). Magnetic particle imaging in vascular medicine. Innovative Surgical Sciences. 3 (3): 179-192. Doi: 10.1515/iss-2018-2026spa
dcterms.referencesBenhal, P., Broda, A., Najafali, D., Malik, P., Mohammed, A., Ramaswamy, B., Shapiro, B. (2019). On-chip testing of the speed of magnetic nano- and micro-particles under a calibrated magnetic gradient. Journal of Magnetism and Magnetic Materials. 474 (November 2018): 187–198. Doi: 10.1016/j.jmmm.2018.10.148spa
dcterms.referencesBlanco-Gutiérrez, V., Demourgues, A., Gaudon, M. (2013). Sub-micrometric β-CoMoO4 rods: optical and piezochromic properties. Dalton Transactions. 42: 13622-13627.spa
dcterms.referencesBlanco-Gutiérrez, V., Saez-Puche, R., Torralvo-Fernández, M. J. (2010). Magnetic behavior of ZnFe2O4 nanoparticles: Effects of a solid matrix and the particles size. Physical Chemistry C. 114: 1789-1795spa
dcterms.referencesChellappa, M., & Vijayalakshmi, U. (2019). Fabrication of Fe 3 O 4 -silica core-shell magnetic nano-particles and its characterization for biomedical applications. Materials Today: Proceedings. 9: 371-379. Doi: 10.1016/j.matpr.2019.02.166spa
dcterms.referencesHankiewicz, J. H., Stoll, J. A., Stroud, J., Davidson, J., Livesey, K. L., Tvrdy, K., … Celinski, Z. J. (2019). Nano-sized ferrite particles for magnetic resonance imaging thermometry. Journal of Magnetism and Magnetic Materials. 469 (August 2018): 550-557. Doi: 10.1016/j. jmmm.2018.09.037spa
dcterms.referencesHoang, V. Van, & Ganguli, D. (2012). Amorphous nanoparticles - Experiments and computer simulations. Physics Reports. 518 (3): 81-140. Doi: 10.1016/j.physrep.2012.07.004spa
dcterms.referencesHoushiar, M., Zebhi, F., Razi, Z. J., Alidoust, A., Askari, Z. (2014). Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. Journal of Magnetism and Magnetic Materials. 371: 43-48. Doi: 10.1016/j.jmmm.2014.06.059spa
dcterms.referencesIranmanesh, P., Tabatabai Yazdi, S., Mehran, M., Saeednia, S. (2018). Superior magnetic properties of Ni ferrite nanoparticles synthesized by capping agent-free one-step coprecipitation route at different pH values. Journal of Magnetism and Magnetic Materials. 449: 172-179. Doi: 10.1016/j.jmmm.2017.10.040spa
dcterms.referencesIsmail M, A., Mostafa M, H., Sayed S, M. (2019). Experimental and mathematical modeling of Cr(VI) removal using nano-magnetic Fe3O4-coated perlite from the liquid phase. Chinese Journal of Chemical Engineering. (Vi): 100632. Doi: 10.1016/j.neubiorev.2019.07.019spa
dcterms.referencesJin, L., Li, T., Wu, B., Yang, T., Zou, D., Liang, X., Zhang, J. (2020). Rapid detection of Salmonella in milk by nuclear magnetic resonance based on membrane filtration super-paramagnetic nanobiosensor. Food Control. 110 (September 2019). Doi: 10.1016/j.foodcont.2019.107011spa
dcterms.referencesKisan, B., Shyni, P. C., Layek, S., Verma, H. C., Hesp, D., Dhanak, V., Perumal, A. (2014). Finite size effects in magnetic and optical properties of antiferromagnetic NiO nanopartsicles. IEEE Transactions on Magnetics. 50 (1). Doi: 10.1109/TMAG.2013.2278539spa
dcterms.referencesLópez-Ruiz, R., Magén, C., Luis, F., Bartolomé, J. (2012). High temperature finite-size effects in the magnetic properties of Ni nanowires. Journal of Applied Physics. 112 (7). Doi: 10.1063/1.4756038spa
dcterms.referencesMohamad, N. D., Zaki, Z. M., Amir, A. (2020). Mechanisms of enhanced oxidative degradation of tetrachloroethene by nano-magnetite catalysed with glutathione. Chemical Engineering Journal. 393 (March): 124760. Doi: 10.1016/j.cej.2020.124760spa
dcterms.referencesMuñoz, F., Romero, A. H., Mejía-López, J., Morán-López, J. L. (2013). Finite size effects on the magnetocrystalline anisotropy energy in Fe magnetic nanowires from first principles. Journal of Nanoparticle Research. 15 (4). Doi: 10.1007/s11051-013-1524-6spa
dcterms.referencesNoval, V. E., Ochoa, C., Carriazo, J. G. (2017). Magnetita, una estructura inorgánica con múltiples aplicaciones en catálisis heterogénea. Revista Colombiana de Quimica. 18: 42-59. Doi: 10.15446/rev.colomb.quim.v1n1.62831spa
dcterms.referencesNurlilasari, P., Widiyastuti, W., Setyawan, H. (2020). Novel monopolar arrangement of multiple iron electrodes for the large-scale production of magnetite nanoparticles for electrochemical reactors. Advanced Powder Technology. 31 (3): 1160-1168. Doi: 10.1016/j.apt.2019.12.043spa
dcterms.referencesPatra, D., Gopalan, B., Ganesan, R. (2019). Direct solid-state synthesis of maghemite as a magnetically recoverable adsorbent for the abatement of methylene blue. Journal of Environmental Chemical Engineering. 7 (5): 103384. Doi: 10.1016/j.jece.2019.103384spa
dcterms.referencesPicasso, G., Vega, J., Uzuriaga, R., Ruiz, G. P. (2012). Preparación de nanopartículas de magnetita por los métodos sol-gel y precipitación: estudio de la composición química y estructura. Revista de La Sociedad Química Del Perú. 78 (3): 170-182.spa
dcterms.referencesRaeisi-Shahraki, R., Ebrahimi, M., Seyyed Ebrahimi, S. A., Masoudpanah, S. M. (2012). Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method. Journal of Magnetism and Magnetic Materials. 324 (22): 3762-3765. Doi: 10.1016/j.jmmm.2012.06.020spa
dcterms.referencesRen, G., Yang, L., Zhang, Z., Zhong, B., Yang, X., Wang, X. (2017). A new green synthesis of porous magnetite nanoparticles from waste ferrous sulfate by solid-phase reduction reaction. Journal of Alloys and Compounds. 710: 875-879. Doi: 10.1016/j.jallcom.2017.03.337spa
dcterms.referencesRodríguez-López, A., Paredes-Arroyo, A., Mojica-Gomez, J., Estrada-Arteaga, C., Cruz- Rivera, J. J., Elías Alfaro, C. G., Antaño-López, R. (2012). Electrochemical synthesis of magnetite and maghemite nanoparticles using dissymmetric potential pulses. Journal of Nanoparticle Research. 14 (8). Doi: 10.1007/s11051-012-0993-3spa
dcterms.referencesRodríguez-López, A. (2012). Estudio de la síntesis y caracterización de nanopartículas de magnetita por métodos electroquímicos. Access date: September 15, 2012. Retrieved from: https://cideteq.repositorioinstitucional.mx/jspui/bitstream/1021/91/1/Estudiodelasíntesisy caracterización de nanopartículas de magnetita por métodos electroquímicos.pdfspa
dcterms.referencesSchneider, C. A., Rasband, W. S., Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9 (7): 671–675. Doi: 10.1038/nmeth.2089spa
dcterms.referencesShahid, M. K. & Choi, Y. (2020). Characterization and application of magnetite particles, synthesized by reverse coprecipitation method in open air from mill scale. Journal of Magnetism and Magnetic Materials. 495 (August 2019): 165823, p9. Doi: 10.1016/j.jmmm.2019.165823spa
dcterms.referencesShokrollahi, H. (2017). A review of the magnetic properties, synthesis methods and applications of maghemite. Journal of Magnetism and Magnetic Materials. 426 (October 2016): 74-81. Doi: 10.1016/j.jmmm.2016.11.033spa
dcterms.referencesSingh, H., Kumar, A., Thakur, A., Kumar, P., Nguyen, V. H., Vo, D. V. N., Kumar, D. (2020). One-Pot Synthesis of Magnetite-ZnO Nanocomposite and Its Photocatalytic Activity. Topics in Catalysis. (0123456789). Doi: 10.1007/s11244-020-01278-zspa
dcterms.referencesSontu, U. B., G, N. R., Chou, F. C., M, V. R. R. (2018). Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method. Journal of Magnetism and Magnetic Materials. 452: 398- 406. Doi: 10.1016/j.jmmm.2018.01.003spa
dcterms.referencesTao, Y., Jiang, B., Yang, X., Ma, X., Chen, Z., Wang, X., Wang, Y. (2020). Physicochemical study of the sustainable preparation of nano-Fe2O3 from ferrous sulfate with coke. Journal of Cleaner Production. 255: 120175, p 9. Doi: 10.1016/j.jclepro.2020.120175spa
dcterms.referencesToma, H. E., Gomes da Silva, D., Condomitti, U. (2016). Nanotecnologia experimental. São Paulo: Blucher. p. 63-85.spa
dcterms.referencesTouqeer, T., Mumtaz, M. W., Mukhtar, H., Irfan, A., Akram, S., Shabbir, A., Yaw Choong, T. S. (2020). Fe3O4-PDA-lipase as surface functionalized nano biocatalyst for the production of biodiesel using waste cooking oil as feedstock: Characterization and process optimization. Energies. 13 (1). Doi: 10.3390/en13010177spa
dcterms.referencesWang, L. & Zhang, M. (2020). Study on synthesis and magnetic properties of Nd2Fe14B nanoparticles prepared by hydrothermal method. Journal of Magnetism and Magnetic Materials, 507(October 2019): 166841. Doi: 10.1016/j.jmmm.2020.166841spa
dcterms.referencesYuan, Z., Zhao, X., Meng, Q., Xu, Y., & Li, L. (2020). Effect of selective coating of magnetite on improving magnetic separation of ilmenite from titanaugite. Minerals Engineering. 149 (May 2019): 106267, p 10. Doi: 10.1016/j.mineng.2020.106267spa
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
4. Influence of process parameters on the size, morphology.pdf
Tamaño:
635.49 KB
Formato:
Adobe Portable Document Format
Descripción:
Ciencias físicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: