Publicación:
Geometric model for interference and diffraction with waves and particles

dc.contributor.authorCastañeda, Román
dc.contributor.authorMatteucci, Giorgio
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.date.accessioned2021-12-09T22:09:17Z
dc.date.available2021-12-09T22:09:17Z
dc.date.issued2019-07-08
dc.description.abstractSe analiza la interferencia y la difracción, tanto de ondas clásicas como de partículas cuánticas, en el marco de un modelo geométrico basado en su propio principio y ley general. El principio es la interacción entre emisores puntuales reales individuales, que caracterizan a las ondas y las partículas, y emisores puntuales virtuales que caracterizan al arreglo experimental. La ley es una ecuación de energías que involucra a la perturbación ondulatoria o la partícula incidentes sobre un punto dado del detector y la energía potencial aportada por el arreglo. En esta teoría, el arreglo se configura en un esquema de preparación-medición con dos estados accesibles, denominados estado de fuente-apagada y estado de fuente-encendida. Así, se preparan conos de correlación espacial que inducen conos de potencial geométrico sobre los que se distribuye la energía a ser medida, luego que la interacción entre emisores puntuales se ha realizado. Las nociones de dualidad onda-partícula, auto-interferencia y colapso de la función de onda son irrelevantes en este modelo.spa
dc.description.abstractInterference and diffraction with classical waves and quantum particles is discussed in the framework of a geometric model based on its own physical principle and general law. The principle is the interaction between individual real point emitters, that characterize the waves and particles, and the virtual point emitters, that characterize the setup. The law is an energy equation that involves the energy of the wave disturbance or the particle arriving to any detector point and the potential energy determined by the setup. In this framework, the setup is configured in a preparation-measurement scheme with two accessible states named the source-turned-off and the source-turned-on states. Two-point correlation cones are prepared which induce geometric potential cones, that distribute the energy of the waves or particles to be measured, once the interaction between the point emitters takes place. Wave-particle duality, self-interference and wave collapse are irrelevant in the framework of this model.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.807
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1132
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.publisher.placeBogotá D.C., Colombiaspa
dc.relation.citationendpage192spa
dc.relation.citationissue167spa
dc.relation.citationstartpage177spa
dc.relation.citationvolume43spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.subject.proposalInterferenciaspa
dc.subject.proposalInterferenceeng
dc.subject.proposalDifracciónspa
dc.subject.proposalDiffractioneng
dc.subject.proposalPotencial geométricospa
dc.subject.proposalGeometric potentialeng
dc.subject.proposalEmisores puntualesspa
dc.subject.proposalPoint emitterseng
dc.titleGeometric model for interference and diffraction with waves and particlesspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentDataPaperspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesBorn, M., and Wolf,E. (1993). Principles of Optics (6th ed. Oxford: Pergamon Press)spa
dcterms.referencesCase, W., Tomandl, M., Deachapunya, S., and Arndt, M. (2009). Realization of optical carpets in the Talbot and Talbot-Lau configurations. Opt. Exp. 17: 20966-20974.spa
dcterms.referencesCapelli, R., Dinelli, F., Gazzano, M., D’Alpaos, R., Stefani, A., Generali, G. (2014). Interface functionalities in multilayer stack organic light emitting transistors (OLETs). Adv. Funct. Mat. 24: 5603-5613.spa
dcterms.referencesCastañeda, R. (2014). Electromagnetic wave fields in the micro-diffraction domain. Phys. Rev. A. 89: 013843 (14pp)spa
dcterms.referencesCastañeda, R. (2014). Three dimensional micro–diffraction modeling. Appl. Opt. 53: 1782-1793spa
dcterms.referencesCastañeda, R. (2016). Spectrum of classes of point emitters of elec-tromagnetic wave fields. J. Opt. Soc. Am. A 33: 1769-1776.spa
dcterms.referencesCastañeda, R. (2017). Discreteness of the real point emitters as a physical condition for diffraction. J. Opt. Soc. Am. A. 34: 184-192spa
dcterms.referencesCastañeda, R. (2017). Interaction description of light propagation. J. Opt. Soc. Am. A. 34: 1035-1044.spa
dcterms.referencesCastañeda, R., and Matteucci, G. (2017). New physical principle for interference of light and material particles. Hawkes, P.H. editor, Advances in Imaging and Electron Physics, Vol. 204, London: Elesevier – Academic Press, Ch. 1spa
dcterms.referencesCastañeda, R., Matteucci, G., Capelli, R. (2016). Interference of Light and of Material Particles: A Departure from the Superposition Principle. Hawkes, P.H. editor, Advances in Imaging and Electron Physics, Vol. 197, Burlington: Academic Press, p. 1-43spa
dcterms.referencesCastañeda, R., Matteucci, G., and Capelli, R. (2016). Quantum Interference without Wave-Particle Duality. J. Mod. Phys. 7: 375-389.spa
dcterms.referencesFeynman, R., Leighton, R., and Sands, M. (1965). The Feynman Lectures on Physics vol. 3 (Menlo Park: Addison–Wesley).spa
dcterms.referencesFeynman, R., and Hibbs, A. (1965). Quantum Mechanics and Path Integrals (New York: McGraw-Hill)spa
dcterms.referencesJuffmann, T., Milic, A., Muellneritsch, M., Asenbaum, P., Tsukernik, A., Tuexen, J., and Arndt, M. (2012). Real-time single-molecule imaging of quantum interference. Nature Nanotech. 7: 297-300spa
dcterms.referencesMandel, L., and Wolf, E. (1995). Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press).spa
dcterms.referencesMatteucci, G. (1990). Electron wavelike behaviour: a historical and experimental introduction. Am. J. Phys. 58: 1143-1147.spa
dcterms.referencesMatteucci, G., Pezzi, M., Pozzi, G., Alberghi, G., Giorgi F., Gabrielli, A., and Gazzadi, G. (2013). Build-up of interference patterns with single electrons. Eur. J. Phys. 34: 511-517spa
dcterms.referencesNairz, O., Arndt, M., and Zeilinger, A. (2003) Quantum interfer-ence experiments with large molecules. Am. J. Phys. 71:319-325spa
dcterms.referencesWen, J., Zhang, Y., and Xiao, M. (2013). The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Adv. Opt. Phot. 5: 83-130.spa
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
3. Geometric model for interference and diffraction.pdf
Tamaño:
3.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Ciencias físicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: