Publicación: Characteristics of two CompetingRisksModelswith Weibull Distributed Risks
dc.contributor.author | Yáñez, Sergio | |
dc.contributor.author | Escobar, Luis A. | |
dc.contributor.author | González, Nelfi | |
dc.contributor.corporatename | Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.date.accessioned | 2021-10-15T15:21:07Z | |
dc.date.available | 2021-10-15T15:21:07Z | |
dc.date.issued | 2014-10-07 | |
dc.description.abstract | Lifetime and survival data are usually the lives of subjects, units, or systems that has been exposed to multiple risks or modes of failure. In the analysis of the data, however, is common to ignore the modes of failure because they are unknown, they are not recorded, or because the complexity of including them in the modeling. It is of interest knowing when the conclusions might be robust to ignoring the failure modes in the analysis. In particular, it would be useful to characterize situations where it could be safely said that the modes of failure effect on the analysis would be negligible or that failing to include such information could completely invalidate the conclusions drawn from the study. As a first step in identifying when the failure modes have little or large influence on the competing risks model, this article studies two different competing risks models: (a) a model with independent risks; (b) a model derived from a multivariate Weibull with dependence. | eng |
dc.description.abstract | Los datos de tiempos de falla y sobrevivencia se refieren generalmente a la vida de individuos, unidades o sistemas que han sido expuestos a múltiples riesgos o modos de falla. Sin embargo, en el análisis de los datos es común ignorar los modos de falla porque son desconocidos, no se registran o por la complejidad de la modelación al incluirlos. Es importante, por lo tanto, determinar la robustez del análisis ignorando los modos de falla. En particular, sería útil caracterizar situaciones donde pudiera decirse que el efecto de los modos de falla en el análisis es despreciable o donde no incluir tal información pudiera invalidar completamente las inferencias del estudio. Como un primer paso para identificar cuando los modos de falla tienen poca o mucha influencia en el modelo de riesgos en competencia, este artículo estudia dos modelos de riesgos en competencia: (a) un modelo con riesgos independientes; (b) un modelo derivado de una distribución Weibull multivariada con dependencia. | spa |
dc.format.extent | 14 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | https://doi.org/10.18257/raccefyn.130 | |
dc.identifier.uri | https://repositorio.accefyn.org.co/handle/001/813 | |
dc.language.iso | eng | spa |
dc.publisher | Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.relation.citationendpage | 311 | spa |
dc.relation.citationissue | 148 | spa |
dc.relation.citationstartpage | 298 | spa |
dc.relation.citationvolume | 38 | spa |
dc.relation.ispartofjournal | Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.rights | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.proposal | Riesgos en competencia | spa |
dc.subject.proposal | Competing risks | eng |
dc.subject.proposal | Gráficos de probabilidad | spa |
dc.subject.proposal | Probability plots | eng |
dc.subject.proposal | Familia de log-localización y escala | spa |
dc.subject.proposal | Log-location-scale family | eng |
dc.subject.proposal | Distribución Weibull | spa |
dc.subject.proposal | Weibull distribution | eng |
dc.subject.proposal | Distribución Weibull multivariada con dependencia | spa |
dc.subject.proposal | Multivariate Weibull with dependence | eng |
dc.subject.proposal | Distribución lognormal | spa |
dc.subject.proposal | Lognormal distribution | eng |
dc.title | Characteristics of two CompetingRisksModelswith Weibull Distributed Risks | spa |
dc.type | Artículo de revista | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | DataPaper | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTREV | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dcterms.audience | Estudiantes, Profesores, Comunidad científica | spa |
dcterms.references | Crowder, M. (1989). A multivariate distribution with Weibull connections. Journal of the Royal Statistical Society. Series B (Methodological) 51(1): 93–107. | spa |
dcterms.references | Crowder, M. J. (2001). Classical Competing Risks. New York: Chapman & Hall/CRC. | spa |
dcterms.references | Crowder, M. (2012). Multivariate Survival Analysis and Competing Risks. New York: Chapman & Hall/CRC. | spa |
dcterms.references | Courant, R. and F. John (1965). Introduction to Calculus and Analysis: Volume One. New York: Interscience Publishers. | spa |
dcterms.references | Hougaard, P. (1986). A class of multivariate failure time distributions. Biometrika 73(3): 671–678. | spa |
dcterms.references | Hougaard, P. (1989). Fitting a multivariate failure time distribution. IEEE Transactions on Reliability 38(4): 444– 448. | spa |
dcterms.references | Jiang, R. and D. Murthy (2003). Study of n-fold Weibull competing risk model. Mathematical and ComputerModelling 38(11), 1259–1273. | spa |
dcterms.references | Johnson, N. L. and S. Kotz (1972). ContinuousMultivariate Distributions. New York: John Wiley & Sons. | spa |
dcterms.references | Kotz, S., N. Balakrishnan, and N. L. Johnson (2000). Continuous Multivariate Distributions (Second edition). New York: John Wiley & Sons. | spa |
dcterms.references | Lawless, J. F. (2003). StatisticalModels andMethods for Lifetime Data (Second edition). New York: John Wiley & Sons. | spa |
dcterms.references | Lee, C. and M. J. Wen (2010). A multivariate Weibull distribution. Pakistan Journal of Statistics and Operation Research 5(2). | spa |
dcterms.references | Lee, L. (1979). Multivariate distributions having Weibull properties. Journal of Multivariate Analysis 9: 267–277. | spa |
dcterms.references | Lu, J. C. and G. K. Bhattacharyya (1990). Some new constructions of bivariate Weibull models. Annals of the Institute of Statistical Mathematics 42(3): 543–559. | spa |
dcterms.references | Meeker, W. Q. and L. A. Escobar (1998). Statistical Methods for Reliability Data. New York: John Wiley & Sons. | spa |
dcterms.references | Meeker, W. Q., L. A. Escobar, and Y. Hong (2009). Using accelerated life tests results to predict product field reliability. Technometrics 51(2): 146–161. | spa |
dcterms.references | Murthy, D. P., M. Xie, and R. Jiang (2004). Weibull Models. Hoboken: John Wiley & Sons. | spa |
dcterms.references | Nelsen, R. B. (2006). An Introduction to Copulas (Second edition). New York: Springer-Verlag. | spa |
dcterms.references | Pintilie, M. (2006). Competing Risks. A Practical Perspective. New York: John Wiley & Sons. | spa |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 5. Caracteristicas de dos modelos con riesgos en competencia.pdf
- Tamaño:
- 884.22 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Matemáticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: