Publicación: Chaos in the Diamond-Shaped Billiard with Rounded Crow
dc.contributor.author | Salazar, Robert P. | |
dc.contributor.author | Téllez, Gabriel | |
dc.contributor.author | Jaramillo, Diego F. | |
dc.contributor.author | González, Diego L. | |
dc.contributor.corporatename | Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.date.accessioned | 2021-10-15T19:32:28Z | |
dc.date.available | 2021-10-15T19:32:28Z | |
dc.date.issued | 2015-06-24 | |
dc.description.abstract | We analyse the classical and quantum behaviour of a particle trapped in a diamond shaped billiard. We defined this billiard as a half stadium connected with a triangular billiard. A parameter $\xi$ which gradually change the shape of the billiard from a regular equilateral triangle ($\xi=1$) to a diamond ($\xi=0$) was used to control the transition between the regular and chaotic regimes. The classical behaviour is regular when the control parameter $\xi$ is one; in contrast, the system is chaotic when $\xi \neq 1$ even for values of $\xi$ close to one. The entropy grows fast as $\xi$ is decreased from 1 and the Lyapunov exponent remains positive for $\xi<1$. The Finite Difference Method was implemented in order to solve the quantum problem. The energy spectrum and eigenstates were numerically computed for different values of the control parameter. The nearest-neighbour spacing distribution is analysed as a function of $\xi$, finding a Poisson and a Gaussian Orthogonal Ensemble (GOE) distribution for regular and chaotic regimes respectively. Several scars and bouncing ball states are shown with their corresponding classical periodic orbits. Along the document the classical chaos identifiers are computed to show that system is chaotic. On the other hand, the quantum counterpart is in agreement with the Bohigas-Giannoni-Schmit conjecture and exhibits the standard features for chaotic billiard such as the scarring of the wavefunction. | eng |
dc.description.abstract | Se estudia el comportamiento de una partícula en el interior de un billar triangular donde uno de sus lados toma de medio estadio que se llamó billar diamante con corona redondeada o DSRC por su siglas en inglés. Se definió un parámetro ξ que cambia suavemente la forma la frontera partiendo de un billar triangular ξ = 1 a un billar DSRC ξ = 1. Dicho parámetro controla la transicipon entre el régimen regular y caótico. Clásicamente, el sistema es regular cuando ξ = 1. Por otro lado, el istema se torna caótico para ξ = 1 incluyendo valores próximos a 1. Se calcula el coeficiente de Lyapunov y la entropía media de la distribucipon de los ángulos de incidencia para caracterizar el comportamiento caótico del sistema. Se observó un rápido crecimiento de la información de las trayectorias hasta saturar la entropía al cambiar levemente la frontera del billar triangular original. A su vez el coeficiente de Lyapunov se mantuvo positivo durante este proceso una vez que ξ se alejaba de 1. Se implementó el método de diferencias finitas FDM para obtener el espectro y los estados propios de la contraparte cuántica del sistema. La distribución de espaciamiento entre primeros vecinos para varios valores de ξ fue construida numéricamente para diferentes valores de ξ ncontrando una distribución de Poisson y otra correspondiente al ensamble ortogonal gaussiano GOE dentro de las regiones clásica y caótica respectivamente. Se identificaron cicatrices en algunos de sus estados asíı como estados de “bola rebotadora” con sus correspondientes órbitas periódicas. El sistema exhibe un comportamiento que está de acuerdo a la conjetura BGS y presenta las características típicas de un billar caótico como la cicatrización de la función de onda. | spa |
dc.format.extent | 19 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | https://doi.org/10.18257/raccefyn.99 | |
dc.identifier.uri | https://repositorio.accefyn.org.co/handle/001/851 | |
dc.language.iso | eng | spa |
dc.publisher | Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.relation.citationendpage | 170 | spa |
dc.relation.citationissue | 151 | spa |
dc.relation.citationstartpage | 152 | spa |
dc.relation.citationvolume | 39 | spa |
dc.relation.ispartofjournal | Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.rights | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.proposal | Caos cuántico | spa |
dc.subject.proposal | Quantum chaos | eng |
dc.subject.proposal | Billares cuánticos | spa |
dc.subject.proposal | Quantum billiards | eng |
dc.subject.proposal | Matrices aleatorias | spa |
dc.subject.proposal | Random matrices | spa |
dc.subject.proposal | Método de diferencias finitas | spa |
dc.subject.proposal | Finite difference method | eng |
dc.title | Chaos in the Diamond-Shaped Billiard with Rounded Crow | spa |
dc.type | Artículo de revista | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | DataPaper | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dcterms.audience | Estudiantes, Profesores, Comunidad científica | spa |
dcterms.references | B.Dietz,T.Friedrich,M.Miski-Oglu,A.Richter,andF.Schfer.(2007)Spectral properties of Bunimovich mushroom billiards.Phys.Rev.E,75,035203 | spa |
dcterms.references | B.Dietz,T.Friedrich,M.Miski-Oglu,A.Richter,T.H.Seligman,andK.Zapfe.(2006).Nonperiodic echoes from mushroom billiard hats.Phys.Rev.E,74,056207. | spa |
dcterms.references | T.Miyaguchi.(2007).Escape time statistics for mushroom billiards. Phys. Rev.E,75,066215. | spa |
dcterms.references | F.M.de Aguiar.(2008).Quantum properties of ir-rational triangular billiards Phys.Rev.E,77,036201. | spa |
dcterms.references | T.Araújo Lima,S. Rodríguez- Pérez,and F. M. de Aguiar.(2013).Ergodicity and quantum correlations in irrational triangular billiards. Phys. Rev. E,87,062902. | spa |
dcterms.references | T. Araújo Lima and F.M. de Aguiar.(2015).Classical billiards and quantum fluids. Phys. Rev. E,91,012923. | spa |
dcterms.references | V. Lopac, I. Mrkonjic and D. Radic.(1999) Electronenergy level statistics in graphene quantum dots. Phys. Rev. E,59,303. | spa |
dcterms.references | V. Lopac and A. Simic.(2011). Communications in Nonlinear Science and Numerical Simulation, Vol. 16, Issue1 | spa |
dcterms.references | V. Lopac,I. Mrkonjic and D.Radic.(2001). Recurrence of particles in static and time varying oval billiards. Phys. Rev.E,64,016214. | spa |
dcterms.references | V.Lopac,I.Mrkonjic and D.Radic.(2002).Phys.Rev.E,66,036202 | spa |
dcterms.references | J. Chen, L. Mohr, Hong-Kun Zhang and Pengfei Zhang. (2013). Chaos, 23, 043137. | spa |
dcterms.references | M. Sieberand F. Steiner.(1990).Physica D. Classical and quantum mechanics of astrongly chaotic billiard system.44. | spa |
dcterms.references | S. Ree and L. E. Reichl. (1999). Phys. Rev. E,60,1607 | spa |
dcterms.references | T. Szeredi and D. A. Goodings. (1993). Classical and quantum chaos of the wedge billiard II. Quantum mechanics and quantization rules. Phys. Rev. E,48,3529. | spa |
dcterms.references | T. Szeredi and D. A. Goodings. (1993). Classical and quantum chaos of the wedge billiard. I. Classical mechanics. Phys. Rev. E48,3518 | spa |
dcterms.references | A. Bäcker, F. Steiner, and P. Stifter. (1995).Phys.Rev.E52,2463 | spa |
dcterms.references | Wenjun Li, L. E. Reichl, and Biao Wu. (2002). Quantum chaos in a ripple billiard. Phys. Rev. E65,056220. | spa |
dcterms.references | A. Kudrolli, S. Sridhar, Akhilesh Pandey and Ramakrishna Ramaswamy. (1994). Signatures of chaos in quantum billiards: Microwave experiments. Phys. Rev. E49,R11(R) | spa |
dcterms.references | S. Hemmady, J. Hart, X. Zheng, T. Antonsen, E. Ott and S. Anlage. (2006). Phys. Rev.B,74,195326 | spa |
dcterms.references | S. Schlunk, M. d’Arcy, S. Gardiner, D.Cassettari, R. Godun, and G. Summy. (2003). Phys. Rev. Lett., 90, 054101. | spa |
dcterms.references | Y. H. Kim, M. Barth, H. J. Stöckmann. (2002), and J. P. Bird. Phys. Rev. B, 65, 165317 | spa |
dcterms.references | L. Sirko and P. M. Koch. (1996).Phys.Rev.E54,R21(R). | spa |
dcterms.references | K. F. Berggren and Z. Li Ji. (1996). Chaos, 6, 543. | spa |
dcterms.references | A. Kudrolli, V. Kidambi, and S. Sridhar. (1995). Phys. Rev. Lett., 75, 822. | spa |
dcterms.references | S.Deus,P.Koch,andL.Sirko.(1995).Phys.Rev.E,52,1146 | spa |
dcterms.references | T. Prosen and M. Robnik. (1993) .J. Phys. A: Math. Gen., 26. | spa |
dcterms.references | O. Bohigas, M. J. Giannoni and C. Schmit. (1981). Phys. Rev. Lett., 52. | spa |
dcterms.references | T. A. Brody. (1973). Lett. Nuovo Cimento,7. | spa |
dcterms.references | G. Cassati and T. Prosen. (1999). Physica D, 131. | spa |
dcterms.references | V. Andreev, O. Agam, B. D. Simons, and B. L. Altshuler. (1996). Quantum Chaos, Phys. Rev. Lett. 76, 3947 | spa |
dcterms.references | M. L. Mehta. (2004). Random Matrices, Academic Press, 2d Ed. | spa |
dcterms.references | F. Haake. (2010). Quantum Signatures of Chaos. Springer-Verlag Berlin Heidelberg, 3rd Ed. | spa |
dcterms.references | R. Akis and D. K. Ferry, (1998). Wave Function Scarring Effects in Open Ballistic Quantum Cavities, VLSI Design, 8, 307 | spa |
dcterms.references | R. Garg. (2008). Analytical and Computational Methods in Electromagnetics, Artech House | spa |
dcterms.references | M. Brack, R. Bhaduri. (1997). Semiclassical Physics, Addison-Wesley Publishing Company. | spa |
dcterms.references | H. Weyl, Göttingen Nach. (1911). 110. | spa |
dcterms.references | H. Weyl. (1946). The Classical Groups: Their Invariants and Representations, Princeton university press | spa |
dcterms.references | M. Kac. (1966). Can One Hear the Shape of a Drum?, Amer. Math. Month. 73,1 | spa |
dcterms.references | R. W. Robinett. (2003).Quantum mechanics of the two-dimensional circular billiard plus bafle system and half-integral angular momentum, Eur. J. Phys. 24,231-243 | spa |
dcterms.references | B. Liand B. Hu. (1998). Statistical Analysis of Scars in Stadium Billiard. J. Phys. A: Math. Gen. 31, 483. | spa |
dcterms.references | H. J. Stockman and D. K. Ferry. (2006). Chaos in Microwave resonators, Séminaire Poincaré IX, 1 | spa |
dcterms.references | O. Bohigas, M. J. Giannoni, and C. Schmit. (1984) Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws, Phys. Rev. Lett. 52, 14 | spa |
dcterms.references | I. Kosztin and K. Schulten. (1997). Boundary Integral Method for Stationary States of Two-Dimensional Quantum Systems, Int .J. Mod. Phys. C8, 293-325. | spa |
dcterms.references | S. W. Mc Donald and A. N. Kaufman. (1979). Spectrum and eigenfunctions for a hamil-tonian with stochastic trajectories, Phys. Rev. Lett. 42, 1189. | spa |
dcterms.references | E. J. Heller. (1984). Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits. Phys. Rev. Lett.53,1515. | spa |
dcterms.references | D. A. Wisniacki, E. G. Vergini, H. M. Pastawski, and F. M. Cucchietti. (2002).Sensitivity to perturbations in a quantum chaotic billiard, Phys. Rev. E65,055206(R). | spa |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 2. Chaos in the Diamond-Shaped Billiard.pdf
- Tamaño:
- 4.53 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Ciencias físicas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: