Publicación:
Thermodynamic properties, electronic and crystallographic structure, and magnetic response of the Sr2HoNbO6 material

dc.contributor.authorMosquera Polo, Ariday S.
dc.contributor.authorDeluque Toro, Críspulo E.
dc.contributor.authorVilla Hernández, Jorge I.
dc.contributor.authorLandínez Téllez, David A.
dc.contributor.authorRoa Rojas, Jairo
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.date.accessioned2021-12-09T20:38:41Z
dc.date.available2021-12-09T20:38:41Z
dc.date.issued2018-10-03
dc.description.abstractEn el presente trabajo se utilizó el código Wien2k, en el marco de la teoría del funcional de la densidad de Kohn-Sham, aplicando el método de ondas planas aumentadas y linealizadas (full-potential linearized augmented plane wave, FP- LAPW) y adoptando la aproximación de gradiente generalizado (GGA) de Perdew, Burke y Ernzerhof para la energía de intercambio y correlación, así como la aproximación de densidad local (local density approximation, LDA) para el cálculo de la densidad de estados y la estructura de bandas de la perovskita doble Sr2HoNbO6. Para los cálculos se consideró el grupo Fmm (#225), experimentalmente obtenido a partir de mediciones de difracción de rayos X y del método de refinamiento de Rietveld. El parámetro de red experimental fue de 8.018 Å, el cual concuerda en un 99,2 % con las predicciones teóricas efectuadas a partir de la minimización de la energía mediante la ecuación de estado de Murnaghan. A partir de mediciones de susceptibilidad magnética en función de la temperatura y del ajuste con la ley de Curie, se obtuvo el valor del momento magnético efectivo 10,01 μB. Este valor es muy cercano del esperado teóricamente a partir de las reglas de Hund (10,60 μB). La brecha de energía determinada entre las bandas de valencia y de conducción fue de 3,3 eV, lo que revela el carácter aislante de la perovskita compleja Sr2HoNbO6 para la configuración de espín hacia arriba, en tanto que se observó el carácter semiconductor para la polarización de espín hacia abajo, con una brecha de energía de 0,77 eV. Las propiedades termodinámicas se calcularon a partir de la ecuación de estado usando el modelo cuasi-armónico de Debye. Un comportamiento del calor específico, con CV≈CP, se encontró a temperaturas inferiores a T = 500 K, con valores del límite de Dulong-Petit que doblaban los que se han reportado para materiales del tipo de la perovskita.spa
dc.description.abstractIn this work we used the Wien2k code, within the framework of the Kohn-Sham Density Functional Theory (DFT), applying the Full-Potential Linearized Augmented Plane Wave method (FP-LAPW) and adopting the Generalized Gradient approximation (GGA) for the exchange-correlation energy due to Perdew, Burke, and Ernzerhof, as well as the Local Density approximation (LDA) for the calculation of the Density of States and band structure of the Sr2HoNbO6 double perovskite. For calculations, we considered the Fmm (#225) space group, which was experimentally obtained from X-ray diffraction measurements and Rietveld refinement. The experimental lattice parameter was 8.018 Å, which is 99.2% in agreement with the theoretical prediction from the minimization of energy through the Murnaghan state equation. From the measurements of magnetic susceptibility as a function of temperature and the adjustment with the Curie law, we obtained a value for the effective magnetic moment of 10.01 μB, which is close to the theoretical expected from Hund’s Rule (10.60 μB). An energy gap of 3.3 eV between the valence band and the conduction band revealed the insulator character of the Sr2HoNbO6 complex perovskite for the spin up configuration, but a semiconductor feature was observed for the spin down polarization, with an energy gap of 0.77 eV. The thermodynamic properties were calculated from the state equation by using the Debye quasiharmonic model. A specific heat behavior of CV≈CP was found at temperatures below T = 500 K, with Dulong-Petit limit values doubling those reported for perovskite materials.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.653
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1090
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.publisher.placeBogotá, Colombiaspa
dc.relation.citationendpage187spa
dc.relation.citationissue164spa
dc.relation.citationstartpage180spa
dc.relation.citationvolume42spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.subject.proposalMaterial tipo perovskitaspa
dc.subject.proposalPerovskite materialeng
dc.subject.proposalEstructura electrónicaspa
dc.subject.proposalElectronic structureeng
dc.subject.proposalEstructura cristalinaspa
dc.subject.proposalCrystalline structureeng
dc.subject.proposalPropeidades termodinámicasspa
dc.subject.proposalThermodynamic propertieseng
dc.titleThermodynamic properties, electronic and crystallographic structure, and magnetic response of the Sr2HoNbO6 materialspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentDataPaperspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAnderson O.L. (1998). Thermoelastic properties of MgSiO3 perovskite using the Debye approach. Amer. Mineral. 83:23-35spa
dcterms.referencesBlaha P., Schwarz K., Madsen G.K.H., Kvasnicka D., Luitz J. (2001). WIEN2k, An Aug-mented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Karlheinz Schwarz, Techn. Universität Wien, Austria. ISBN 3-9501031-1-2spa
dcterms.referencesBlanco, M.A., Francisco, E., Luaña, V. (2004). GIBBS: Iso-thermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comp. Phys. Commun. 158: 57-72.spa
dcterms.referencesBonilla M., Landínez-Téllez D.A., Arbey-Rodríguez J., Albino-Aguiar J., Roa-Rojas J. (2008). Study of half-metallic behavior in Sr2CoWO6 perovskite by ab initio DFT calcu-lations. J. Magn. Magn. Mater. 320: e397-e399.spa
dcterms.referencesCorredor L.T., Landínez-Téllez D.A., Pimentel Jr. J., Pureur P., Roa-Rojas J. (2011). Magnetic, Structural and Morpho-logical Characterization of Sr2GdRuO6 Double Perovskite. J. Mod. Phys. 2: 154-157spa
dcterms.referencesDedova E.S., Shadrin V.S., Petrushina M.Y., Kulkov S.N.(2016). The Study on Thermal Expansion of Ceramic Composites with Addition of ZrW2O8. Mater. Sci. Engin. 116: 012030(1)- 012030(5)spa
dcterms.referencesDeluque-Toro C.E., Arbey-Rodríguez M.J., Landínez-Téllez D.A., Moreno-Salazar N.O., Roa-Rojas J. (2014). First principles study of the structural and electronic properties of double perovskite Ba2YTaO6 in cubic and tetragonal phases. Phys. B. 455: 18-21spa
dcterms.referencesDeluque-Toro C.E., Landínez-Téllez D.A., Roa-Rojas J. (2018). Ab-initio analysis of magnetic, structural, electronic and thermodynamic properties of the Ba2TiMnO6 manganite. DYNA. 85: 27-36spa
dcterms.referencesErten O., Meetei O.N., Mukherjee A., Randeria M., Trivedi N., Woodward P. (2011). Theory of Half-Metallic Ferri-magnetism in Double Perovskites. Phys. Rev. Lett. 107:257201(1)-257201(4).spa
dcterms.referencesHazen R.M. (1988). Perovskites. Sci. Am. 258: 74-81spa
dcterms.referencesHohenberg P., Khon W. (1964). Inhomogeneous electron gas. Phys. Rev. 136: B864-B871spa
dcterms.referencesHoward C.H., Kennedy B.J., Woodward P.M. (2003). Ordered double perovskites – a group-theoretical analysis. Acta Cryst. B. 59: 463-471spa
dcterms.referencesKhandy S.A., Gupta D.C. (2018). Electronic structure, magnetism and thermoelectric properties of double perovskite Sr2HoNbO6. J. Magn. Magn. Mater. 458: 176-182spa
dcterms.referencesKhon W., Sham L.S. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140: A1133- A1138spa
dcterms.referencesKim J., Chen X., Shih P-C., Yang H. (2017). Porous Perovskite-Type Lanthanum Cobaltite as Electrocatalysts toward Oxygen Evolution Reaction.Sustainable Chem. Eng. 5:10910-10917.spa
dcterms.referencesKittel C. (1997). Introduction to Solid State Physics, 6th Ed. John Wiley & Sons, Inc., New York. p. 482spa
dcterms.referencesKruth A., West A.R. (2001). Electrical properties of the oxygen-deficient perovskites, Ca2Mn2−xNbxOγ: 0 ≤ x ≤ 1.2, with Mn valence varying from +2.0 to +4.0. J. Mater. Chem. 11:153-159spa
dcterms.referencesLandínez-Téllez D.A., Llamosa D.P., Deluque-Toro C.E., Gil-Rebaza A.V., Roa-Rojas J. (2013). Structural, magnetic, multiferroic and electronic properties of Sr2ZrMnO6 double perovskite. J. Mol. Struct. 1034: 233-237spa
dcterms.referencesLee A.T., Marianetti C.A. (2018). Structural and metal-insulator transitions in rhenium-based double perovskites via orbital ordering. Phys. Rev. B. 97: 045102(1)-045102(5)spa
dcterms.referencesLlamosa D.P., Landínez-Téllez D.A., Roa-Rojas J. (2009). Magnetic and structural behavior of Sr2ZrMnO6 double perovskite. Phys B. 404: 2726-2729spa
dcterms.referencesLufaso M.W., Barnes P.W., Woodward P.M. (2006). Structure prediction of ordered and disordered multiple octahedral cation perovskites using SPuDS. Acta Cryst. B. 62: 397-410.spa
dcterms.referencesMadueño Q., Landínez-Téllez D.A., Roa-Rojas J. (2006). Production and characterization of Ba2NdSbO6 complex perovskite as a substrate for YBa2Cu3O7-d superconducting films. Mod. Phys. Lett. B. 20: 427-437.spa
dcterms.referencesMolegraaf H.J.A., Hoffman J., Vaz C.A.F., Gariglio S., van der Marel D., Ahn C.H., Triscone J-M. (2009). Magnetoelectric Effects in Complex Oxides with Competing Ground States. Adv. Mater. 21: 3470-3474.spa
dcterms.referencesMoreno L.C., Valencia J.S., Landínez-Téllez D.A., Arbey-Rodríguez J., Martínez M.L., Roa-Rojas J., Fajardo F.(2008). Preparation and structural study of LaMnO3 mag-netic material. J. Magn. Magn. Mater. 320: e19-e21.spa
dcterms.referencesMurnaghan, F.D. (1944). The Compressibility of Media under Extreme Pressures. Proceedings of National Academy of Sciences, USA. 30: 244-247spa
dcterms.referencesPerdew J.P., Burke K., Ernzerhof M. (1996). Generalized Gra-dient Approximation Made Simple. Phys. Rev. Lett. 77:3865-3868spa
dcterms.referencesPilo J., Miranda A., Trejo A., Carvajal E., Cruz-Irisson M.(2017). Bidimensional perovskite systems for spintronic applications. J. Mol. Model. 23: 322-325.spa
dcterms.referencesQiang L., Duo-Hui H., Qi-Long C., Fan-Hou W. (2013). Phase transition and thermodynamic properties of BiFeO3 from first-principles calculations. Chin. Phys. B. 22: 037101(1)-037101(4)spa
dcterms.referencesTriana C.A., Corredor L.T., Landínez-Téllez D.A., Roa-Rojas J.(2011). High temperature-induced phase transitions in Sr2Gd RuO6 complex perovskite. Mater. Res. Bull. 46: 2478-2483.spa
dcterms.referencesTriana C.A., Landínez-Téllez D.A., Arbey-Rodríguez J., Fajardo F., Roa-Rojas J. (2012). Electronic, crystal structure and morphological properties of the Sr2DyRuO6 double perovskite. Mater. Lett. 82: 116-119.spa
dcterms.referencesTriana C.A., Landínez-Téllez D.A., Roa-Rojas J. (2015). General study on the crystal, electronic and band struc-tures, the morphological characterization, and the magnetic properties of the Sr2DyRuO6 complex perovskite. Mater. Charact. 99: 128spa
dcterms.referencesWondratschek, W. 2006. International Tables for Crystallography A, Chapter 8.3, p. 732-740.spa
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2. Thermodynamic properties, electronic.pdf
Tamaño:
2.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Ciencias físicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: