Publicación:
Hongos micorrízicos arbusculares (HMA) en el bosque seco tropical afectado por incendios y depósitos fluviolcánicos en el departamento del Tolima, Colombia

dc.contributor.authorDevia-Grimaldo, Laura Daniela
dc.contributor.authorPeréz-Moncada, Urley Adrián
dc.contributor.authorLópez-D, Edwin Orlando
dc.contributor.authorVarón-López, Maryeimy
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.date.accessioned2022-11-01T21:50:42Z
dc.date.available2022-11-01T21:50:42Z
dc.date.issued2021-12-13
dc.description.abstractEl bosque seco tropical (BST) concentra la mayor parte de la biodiversidad mundial y actualmente es uno de los ecosistemas más degradados de Colombia. Para su conservación es importante conocer la diversidad de microorganismos del suelo que forman parte de él, como los hongos micorrízicos arbusculares (HMA). Aquí evaluamos el efecto del fuego y los depósitos fluviolcánicos sobre la composición, abundancia y diversidad de los HMA en suelos de bosque seco tropical en el departamento de Tolima, Colombia. Seleccionamos cuatro áreas: dos con vegetación nativa en la Reserva Natural Santafé de Los Guaduales (RN) y Armero (AN), una afectada por un incendio forestal (RQ), y otra por depósitos fluviolcánicos (ADV). Los morfotipos de HMA se identificaron extrayendo esporas directamente del suelo (SD) y de cultivos trampa (TC) mediante el método de tamizado en húmedo y posteriormente montándolas en placas para la observación microscópica de su morfología. Se identificaron un total de 64 morfotipos distribuidos en cuatro órdenes, nueve familias y 17 géneros, siendo la familia Glomeraceae la que registró más morfoespecies indicadoras. Las cuatro áreas mostraron diferencias significativas en la composición, abundancia y diversidad de sus comunidades de HMA; RQ fue el área con mayor abundancia y diversidad seguida de AN. Nuestros resultados son una importante contribución al conocimiento de las comunidades de microorganismos TDF y su comportamiento en suelos afectados por diferentes eventos naturales. También contribuyen al inventario nacional de hongos con capacidades adaptativas. Las cuatro áreas mostraron diferencias significativas en la composición, abundancia y diversidad de sus comunidades de HMA; RQ fue el área con mayor abundancia y diversidad seguida de AN. Nuestros resultados son una importante contribución al conocimiento de las comunidades de microorganismos TDF y su comportamiento en suelos afectados por diferentes eventos naturales. También contribuyen al inventario nacional de hongos con capacidades adaptativas. Las cuatro áreas mostraron diferencias significativas en la composición, abundancia y diversidad de sus comunidades de HMA; RQ fue el área con mayor abundancia y diversidad seguida de AN. Nuestros resultados son una importante contribución al conocimiento de las comunidades de microorganismos TDF y su comportamiento en suelos afectados por diferentes eventos naturales. También contribuyen al inventario nacional de hongos con capacidades adaptativas.spa
dc.description.abstractThe tropical dry forest (TDF) concentrates most of the world’s biodiversity nut currently it is one of the most degraded ecosystems in Colombia. For its conservation, it is important to understand the diversity of soil microorganisms that are part of it, such as the arbuscular mycorrhizal fungi (AMF). Here we evaluated the effect of fire and fluviolcanic deposits on the composition, abundance, and diversity of the AMF in tropical dry forest soils in the department of Tolima, Colombia. We selected four areas: two with native vegetation in Santafé de Los Guaduales Natural Reserve (RN) and Armero (AN), one affected by a forest fire (RQ), and another one by fluviolcanic deposits (ADV). We identified the AMF morphotypes by extracting spores directly from the soil (SD) and from trap cultures (TC) using the wet sieving method and subsequently mounting them on plates for the microscopic observation of their morphology. A total of 64 morphotypes were identified distributed in four orders, nine families, and 17 genera, the Glomeraceae family registering more indicator morphospecies. The four areas showed significant differences in their AMF communities’ composition, abundance, and diversity; RQ was the area with the highest abundance and diversity followed by AN. Our results are an important contribution to the knowledge of TDF microorganism communities and their behavior in soils affected by different natural events. They also contribute to the national inventory of fungi with adaptive capacities.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1482
dc.identifier.eissn2382-4980spa
dc.identifier.issn0370-3908spa
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/2011
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationendpage1153spa
dc.relation.citationissue177spa
dc.relation.citationstartpage1137spa
dc.relation.citationvolume45spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.proposalHongos micorrízicos arbuscularesspa
dc.subject.proposalArbuscular mycorrhizal fungieng
dc.subject.proposalHongos del suelospa
dc.subject.proposalSoil fungieng
dc.subject.proposalCultivos trampaspa
dc.subject.proposalTrap cropseng
dc.subject.proposalBosque seco tropicalspa
dc.subject.proposalTropical dry foresteng
dc.subject.proposalPerturbacionesspa
dc.subject.proposalDisturbancesspa
dc.titleHongos micorrízicos arbusculares (HMA) en el bosque seco tropical afectado por incendios y depósitos fluviolcánicos en el departamento del Tolima, Colombiaspa
dc.titleArbuscular mycorrhizal fungi (AMF) in the tropical dry forest affected by fire and fluviolcanic deposits in the department of Tolima, Colombiaeng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica.spa
dcterms.referencesAguilera, P., Cornejo, P., Borie, F., Barea, J. M., von Baer, E., Oehl, F. (2014). Diversity of arbuscular mycorrhizal fungi associated with Triticum aestivum L. plants growing in an Andosol with high aluminum level. Agriculture, Ecosystems and Environment. 186: 178-184.spa
dcterms.referencesÁlvarez‐Lopeztello, J., Hernández‐Cuevas, L. V., del Castillo, R. F., Robles, C. (2019). Diversity of arbuscular mycorrhizal fungi associated with Brachiaria brizantha pastures in lowlands of Oaxaca, Mexico. Grassland Science. 65 (3): 197-201.spa
dcterms.referencesAllen, E. B., Allen, M. F., Egerton-Warburton, L., Corkidi, L., Gómez-Pompa, A. (2003). Impacts of early‐and late‐seral mycorrhizae during restoration in seasonal tropical forest, Mexico. Ecological Applications. 13 (6): 1701-1717.spa
dcterms.referencesAmbrosino, M. L., Cabello, M. N., Busso, C. A., Velázquez, M. S., Torres, Y. A., Cardillo, D. S., Rodríguez, G. (2018). Communities of arbuscular mycorrhizal fungi associated with perennial grasses of different forage quality exposed to defoliation. Journal of Arid Environments. 154: 61-69.spa
dcterms.referencesAuge, R.M. (2001). Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza. 11: 3-42.spa
dcterms.referencesAtunnisa, R. & Ezawa, T. (2019). Nestedness in arbuscular mycorrhizal fungal communities in a volcanic ecosystem: selection of disturbance-tolerant fungi along an elevation gradient. Microbes and environments. ME19073.spa
dcterms.referencesBalázs, T. K., Blaszkowski, J., Chwat, G., Góralska, A., Gáspár, B. K., Lukács, A. F., Kovács, G. M. (2015). Spore-based study of arbuscular mycorrhizal fungi of semiarid sandy áreas in Hungary, with Diversispora jakucsiae sp. Nov. Mycol. Prog. 14: 1-11.spa
dcterms.referencesBocanegra-González, K. T., Thomas, E., Guillemin, M. L., de Carvalho, D., Gutiérrez, J. P., Caicedo, C. A., González, M. A. (2018). Genetic diversity of Ceiba pentandra in Colombian seasonally dry tropical forest: Implications for conservation and management. Biological Conservation. 227: 29-37.spa
dcterms.referencesBorie, F., Aguilera, P., Castillo, C., Valentine, A., Seguel, A., Barea, J. M., Cornejo, P. (2019). Revisiting the nature of phosphorus pools in Chilean volcanic soils as a basis for arbuscular mycorrhizal management in plant acquisition. Journal of Soil Science and Plant Nutrition. 19 (2): 390-401.spa
dcterms.referencesBłaszkowski, J. & Chwat, G. (2013). Septoglomus deserticola emended and new combinations in the emended definition of the family Diversisporaceae. Acta Mycologica. 48 (1): 89-103.spa
dcterms.referencesBrundrett, D.L., Glytsis, E.N., Gaylord, T.K. (1994). Modelos de capas homogéneas para rejillas de relieve superficial dieléctricas de alta frecuencia espacial: diseños de difracción cónica y antirreflejos. Óptica aplicada. 33 (13): 2695-2706.spa
dcterms.referencesBrundrett, M. C. & Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist. 220 (4): 1108-1115.spa
dcterms.referencesCarrillo-Saucedo, S. M., Gavito, M. E. Siddique, I. (2018). Arbuscular mycorrhizal fungal spore communities of a tropical dry forest ecosystem show resilience to land-use change. Fungal Ecology. 32: 29-39.spa
dcterms.referencesCarson, C. M., Jumpponen, A., Blair, J. M., Zeglin, L. H. (2019). Soil fungal community changes in response to long-term fire cessation and N fertilization in tallgrass prairie. Fungal Ecology. 41: 45-55.spa
dcterms.referencesCastillo, C. G., Puccio, F., Morales, D., Borie, F., Sieverding, E. (2012). Early arbuscular mycorrhiza colonization of wheat, barley and oats in Andosols of southern Chile. Journal of Soil Science and Plant Nutrition. 12 (3): 511-524.spa
dcterms.referencesCofré, N., Urcelay, C., Wall, L. G., Domínguez, L., Becerra, A. (2018). El potencial de colonización micorrícico-arbuscular varía entre prácticas agrícolas y sitios en diferentes áreas geográficas de la región Pampeana. Ecología Austral. 28 (3): 581-592.spa
dcterms.referencesCoroi, M., Skeffington, M. S., Giller, P., Smith, C., Gormally, M., O’Donovan, G. (2004). Vegetation diversity and stand structure in streamside forests in the south of Ireland. Forest Ecology and Management. 202 (1-3): 39-57.spa
dcterms.referencesChao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs. 84 (1): 45-67.spa
dcterms.referencesChagnon, P. L., Bradley, R. L., Maherali, H., Klironomos, J. N. (2013). A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science. 18 (9): 484-491.spa
dcterms.referencesChaudhary, V. B., O’Dell, T. E., Rillig, M. C., Johnson, N. C. (2014). Multiscale patterns of arbuscular mycorrhizal fungal abundance and diversity in semiarid shrublands. Fungal Ecology. 12: 32-43.spa
dcterms.referencesClaridge, A. W., Trappe, J. M., Hansen, K. (2009). Do fungi have a role as soil stabilizers and remediators after forest fire? Forest Ecology and Management. 257 (3): 1063-1069.spa
dcterms.referencesDavison, J., Moora, M., Jairo, T., Vasar, M., Öpik, M., Zobel, M. (2016). Reglas de ensamblaje jerárquico en comunidades de hongos micorrízicos arbusculares (AM). Biología y Bioquímica del Suelo. 97: 63-70.spa
dcterms.referencesDay, N. J., Dunfield, K. E., Johnstone, J. F., Mack, M. C., Turetsky, M. R., Walker, X. J., Baltzer, J. L. (2019). Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada. Global Change Biology. 25 (7): 2310-2324.spa
dcterms.referencesde Assis, D. M. A., De Melo, M. A. C., da Silva, D. K. A., Oehl, F., da Silva, G. A. (2018). Assemblages of arbuscular mycorrhizal fungi in tropical humid and dry forests in the Northeast of Brazil. Botany. 96 (12): 859-871.spa
dcterms.referencesDhillion, S.S., Andersen, R.C., Liberta, A.E. (1988). Effect of fire on the mycorrhizal ecology of little bluestem (Schizachyrium scoparium). Can. J. Bot. 66: 706-713.spa
dcterms.referencesDove, N. C. & Hart, S. C. (2017). Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecology. 13 (2): 37-65.spa
dcterms.referencesDudinszky, N., Cabello, M. N., Grimoldi, A. A., Schalamuk, S., Golluscio, R. A. (2019). Role of grazing intensity on shaping arbuscular mycorrhizal fungi communities in Patagonian semiarid steppes. Rangeland Ecology and Management. 72 (4): 692-699.spa
dcterms.referencesDufrêne, M. & Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs. 67 (3): 345-366.spa
dcterms.referencesEsquivel, H. E., Tinoco, F., Torres, A. J. (2016). La sucesión vegetal en los lodos fluviovolcánicos de Armero-Tolima-Colombia 30 años después de la erupción del volcán Arenas del Nevado del Ruiz: Plant succession in the fluvial-volcanic mud from Armero-Tolima- Colombia 30 years after the eruption of the “Nevado del Ruiz” Volcano. Caldasia. 38 (1): 101-116.spa
dcterms.referencesGarcía, C., Franco, D., Arturo, M., Quintero, J., Rao, I. M. (2000). Catálogo de cepas de micorrizas arbusculares.Colombia. Garcia, K., Doidy, J., Zimmermann, S. D., Wipf, D., Courty, P. E. (2016). Take a trip through the plant and fungal transportome of mycorrhiza. Trends in Plant Science. 21 (11): 937–950.spa
dcterms.referencesGemma, J. N. & Koske, R. E. (1990). Mycorrhizae in recent volcanic substrates in Hawaii. American Journal of Botany. 77 (9): 1193-1200.spa
dcterms.referencesGerdemann, J. W. & Nicolson, T. H. (1963). Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society. 46(2): 235-244.spa
dcterms.referencesGirma, G. (2015). Microbial bioremediation of some heavy metals in soils: an updated review. Egyptian Academic Journal of Biological Sciences. G. Microbiology. 7 (1): 29-45.spa
dcterms.referencesGómez, A.F. & Sánchez de Prager, M. (2012). Actividad biológica de hongos formadores de micorriza arbuscular en un suelo humic dystrudepts cultivado con maíz y diferentes fuentes de fertilización. Acta Agronómica. 61 (5): 57.spa
dcterms.referencesGuzmán, O.A., Castaño-Zapata, J., Sánchez de Prager, M. (2013). Estudio preliminar del efecto de microorganismos benéficos sobre el tomate (Solanum lycopersicum L.) y el nematodo del nudo radical (Meloidogyne spp.) Revista Agronomía. 21: 51-64.spa
dcterms.referencesGuzman, A., Montes, M., Hutchins, L., DeLaCerda, G., Yang, P., Kakouridis, A., Dahlquist-Willard, R. M., Firestone, M. K., Kremen, C. (2021). Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape. New Phytologist. 231(1): 447-459.spa
dcterms.referencesHage-Ahmed, K., Rosner, K., Steinkellner, S. (2019). Arbuscular mycorrhizal fungi and their response to pesticides. Pest Management Science. 75 (3): 583-590spa
dcterms.referencesHelgason, T., Merryweather, J. W., Young, J. P. W., Fitter, A. H. (2007). Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community. Journal of Ecology. 95(4): 623-630.spa
dcterms.referencesHernández-Ortega, H. A., Alarcón, A., Ferrera-Cerrato, R., Zavaleta-Mancera, H. A., López- Delgado, H. A., Mendoza-López, M. R. (2012). Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. Journal of Environmental Management. 95: S319-S324.spa
dcterms.referencesHerrera, E. M. C. & Arana, R. C. (2010). Hongos micorrizo arbusculares asociados a los principales cultivos de los suelos sulfatados ácidos de Córdoba, Colombia. Suelos Ecuatoriales. 40 (1): 57-61spa
dcterms.referencesHill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology. 54(2): 427-432.spa
dcterms.referencesHoagland, D. R. & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347 p. (2nd edition).spa
dcterms.referencesHolden, S. R., Rogers, B. M., Treseder, K. K., Randerson, J. T. (2016). Fire severity influences the response of soil microbes to a boreal forest fire. Environmental Research Letters. 11 (3):035004.spa
dcterms.referencesHolste, E. K., Holl, K. D., Zahawi, R. A., Kobe, R. K. (2016). Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration. Ecology and Evolution. 6 (20): 7253-7262.spa
dcterms.referencesHontoria, C., García-González, I., Quemada, M., Roldán, A., Alguacil M.M. (2019). El cultivo de cobertura determina la composición de la comunidad de HMA en el suelo y en las raíces del maíz después de una rotación continua de cultivos de diez años. Science of the Total Environment. 660: 913-922.spa
dcterms.referencesJiang, S., Hu, X., Kang, Y., Xie, C., An, X., Dong, C., Shen, Q. (2020). Arbuscular mycorrhizal fungal communities in the rhizospheric soil of litchi and mango orchards as affected by geographic distance, soil properties and manure input. Applied Soil Ecology. 152: 103593.spa
dcterms.referencesKeymer, A. & Gutjahr, C. (2018). Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. Current Opinion in Plant Biology. 44: 137-144.spa
dcterms.referencesKrüger, M., Teste, F. P., Laliberté, E., Lambers, H., Coghlan, M., Zemunik, G., Bunce, M. (2015). The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression. Molecular Ecology. 24 (19): 4912-4930.spa
dcterms.referencesLanfranco, L., Fiorilli, V., Gutjahr, C. (2018). Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist. 220 (4): 1031-1046.spa
dcterms.referencesLeal, P. L., Siqueira, J. O., Stuermer, S. L. (2013). Switch of tropical Amazon forest to pasture affects taxonomic composition but not species abundance and diversity of arbuscular mycorrhizal fungal community. Applied Soil Ecology. 71: 72-80.spa
dcterms.referencesLindahl, B. D., Ihrmark, K., Boberg, J., Trumbore, S. E., Hogberg, P., Stenlid, J., Finlay, R. D. (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist. 173: 611-620.spa
dcterms.referencesLongo, S., Nouhra, E., Goto, B. T., Berbara, R. L., Urcelay, C. (2014). Effects of fire on arbuscular mycorrhizal fungi in the Mountain Chaco Forest. Forest Ecology and Management. 315: 86-94.spa
dcterms.referencesMahdhi, M., Tounekti, T., Abada, E., Al‐Faifi, Z., Khemira, H. (2020). Diversity of arbuscular mycorrhizal fungi associated with acacia trees in southwestern Saudi Arabia. Journal of Basic Microbiology. 60 (4): 322-330.spa
dcterms.referencesMarinho, F., Oehl, F., da Silva, I. R., Coyne, D., da Nóbrega Veras, J. S., Maia, L. C. (2019). High diversity of arbuscular mycorrhizal fungi in natural and anthropized sites of a Brazilian tropical dry forest (Caatinga). Fungal Ecology. 40: 82-91.spa
dcterms.referencesMartínez-García, L. B., Richardson, S. J., Tylianakis, J. M., Peltzer, D. A., Dickie, I. A. (2015). Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytologist. 205 (4): 1565-1576.spa
dcterms.referencesMirzaei, J. (2016). Impacts of two spatially and temporally isolated anthropogenic fire events on soils of oak-dominated Zagros forests of Iran. Turkish Journal of Agriculture and Forestry. 40 (1): 109-119. Doi: 10.3906/TAR-1406-61spa
dcterms.referencesMontenegro-Gómez, S.P., Gómez-Posada, S., Barrera-Berdugo, S.E. (2017). Efecto de la gallinaza sobre Azotobacter sp., Azospirillum sp., y hongos micorrízicos arbusculares en un cultivo de cebolla (Allium fitulosum). Revista Entramado. 26: 250-257.spa
dcterms.referencesMorton, J. B. (1988). Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon. 32: 267-324.spa
dcterms.referencesMorton, J.B. & Benny, G.L. (1990). Clasificación revisada de hongos micorrízicos arbusculares (Zygomycetes): un nuevo orden, Glomales, dos nuevos subórdenes, Glomineae y Gigasporineae, y dos nuevas familias, Acaulosporaceae y Gigasporaceae, con una enmienda de Glomaceae. Mycotaxon. 37: 471-491.spa
dcterms.referencesMorton, J. B., Bentivenga, S. P., Bever, J. D. (1995). Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes). Can. J. Bot. 73(S1): 25-32.spa
dcterms.referencesOrgiazzi, A., Bardgett, R. D., Barrios, E., Behan-Pelletier, V., Briones, M. J. I., Chotte, J-L., De Deyn, G. B., Eggleton, P., Fierer, N., Fraser, T., Hedlund, K., Jeffery, S., Johnson, N. C., Jones, A., Kandeler, E., Kaneko, N., Lavelle, P., Lemanceau, P., Miko, L., Montanarella, L., Moreira, F. M. S., Ramírez, K. S., Scheu, S., Singh, B. K., Six, J., van der Putten, W. H., Wall, D. H. (Eds.) (2016). Global soil biodiversity atlas. European Commission. European Commission, Publications Office of the European Union, Luxembourg. 176 pp.spa
dcterms.referencesPeña-Venegas, C.P. (2015). People, soil and manioc interactions in the upper Amazon region. PhD. Thesis. Wageningen University ISBN: 978–94–6257–322–2.spa
dcterms.referencesPeña-Venegas, C. P. & Vasco-Palacios, A. M. (2019). Endo- and Ectomycorrhizas in Tropical Ecosystems of Colombia. En Pagano, M. C., & Lugo, M. A. (Eds.), Mycorrhizal fungi in South America. (pp 111-145). Springer.spa
dcterms.referencesPereira, C. M., Goto, B. T., da Silva, D. A., de Ferreira, A. A., de Souza, F. A., da Silva, G. A., ...& Oehl, F. (2015). Acaulospora reducta sp. nov. and A. excavata-two glomeromycotan fungi with pitted spores from Brazil. Mycotaxon. 130 (4): 983-995.spa
dcterms.referencesPérez, Y. & Schenck, N.C. (1990). Un código único para cada especie de hongos micorrízicos VA. Micología. 82 (2): 256-260.spa
dcterms.referencesPizano, C. & García, H. (2014). El bosque seco tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt, Bogotá (Colombia) Ministerio de Ambiente y Desarrollo Sostenible, Bogotá (Colombia).spa
dcterms.referencesPosada, R. H., de Prager, M. S., Heredia-Abarca, G., Sieverding, E. (2018). Effects of soil physical and chemical parameters, and farm management practices on arbuscular mycorrhizal fungi communities and diversities in coffee plantations in Colombia and México. Agroforestry Systems. 92 (2): 555-574.spa
dcterms.referencesPurin, S. & Rillig, M.C. (2007). La proteína fúngica micorrízica arbuscular glomalina: Limitaciones, avances y una nueva hipótesis para su función. Pedobiologia. 51 (2): 123-130.spa
dcterms.referencesPhillips, M. L., Weber, S. E., Andrews, L. V., Aronson, E. L., Allen, M. F., Allen, E. B. (2019). Fungal community assembly in soils and roots under plant invasion and nitrogen deposition. Fungal Ecology. 40: 107-117.spa
dcterms.referencesR Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.spa
dcterms.referencesRamírez-Gómez, M., Pérez-Moncada, U., Serralde-Ordóñez, D., Peñaranda-Rolón, A., Roveda-Hoyos, G., Rodríguez, A. (2019). Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana L.) crops. Agronomía Colombiana. 37(3): 239-254.spa
dcterms.referencesŘezáčová, V., Slavíková, R., Konvalinková, T., Zemková, L., Řezáč, M., Gryndler, M., Jansa, J. (2019). Geography and habitat predominate over climate influences on arbuscular mycorrhizal fungal communities of mid-European meadows. Mycorrhiza. 29 (6): 567-579.spa
dcterms.referencesRillig, M. C. & Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytologist. 171:41-53.spa
dcterms.referencesRodriguez, A. & Sanders, I. R. (2015). The role of community and population ecology in applying mycorrhizal fungi for improved foodsecurity. The ISME Journal. 9 (5): 1053-1061.spa
dcterms.referencesRodríguez-López, C. P., de León, A. N., Arboleda-Valencia, J. W., Valencia-Jiménez, A., Valle-Molinares, R. H. (2015). Hongos micorrizógenos arbusculares asociados a plantas de Zea mays l. en un agroecosistema del Atlántico, Colombia. Agronomía. 23 (1):20-34.spa
dcterms.referencesRodrigues, L. A., da Silva, D. K. A., Yano-Melo, A. M. (2021). Arbuscular mycorrhizal fungal assemblages in conservation unit of Atlantic forest areas under native vegetation and natural regeneration. Microbial Ecology. 82: 122-134.spa
dcterms.referencesSaini, R. & Sharma, S. (2019). Climate resilient microbes in sustainable crop production. Contaminants in Agriculture and Environment: Health Risks and Remediation. 1: 264.spa
dcterms.referencesSánchez de Prager, M., Posada, R., Velásquez, D., Narváez, M. (2010). Metodologías básicas para el trabajo con micorriza arbuscular y hongos formadores de micorriza arbuscular. Universidad Nacional de Colombia sede Palmira. 36 p.spa
dcterms.referencesSandoval-Pineda, J. F., Pérez-Moncada, U. A., Rodríguez, A., Torres-Rojas, E. (2020). High cadmium concentration resulted in low arbuscular mycorrhizal fungi community diversity associated to cocoa (Theobroma cacao L.). Acta Biológica Colombiana. 25 (3): 333-344.spa
dcterms.referencesSatti, P., Mazzarino, M. J., Roselli, L., Crego, P. (2007). Factors affecting soil P dynamics in temperate volcanic soils of southern Argentina. Geoderma. 139 (1-2): 229-240.spa
dcterms.referencesSeguel, A., Castillo, C. G., Morales, A., Campos, P., Cornejo, P., Borie, F. (2016). Arbuscular mycorrhizal symbiosis in four Al-tolerant wheat genotypes grown in an acidic Andisol. Journal of soil science and plant nutrition. 16 (1): 164-173.spa
dcterms.referencesSieverding, E. (1991). Ecology of VAM fungi in tropical agrosystems. Agriculture, Ecosystems & Environment. 9 (1): 369-390.spa
dcterms.referencesSieverding, E., Berndt, R., Oehl, F. (2014). Rhizoglomus, a new genus of the Glomeraceae. Mycotaxon. 129 (2): 373-386.spa
dcterms.referencesSousa, N. M. F., Veresoglou, S. D., Oehl, F., Rillig, M. C., Maia, L. C. (2018). Predictors of arbuscular mycorrhizal fungal communities in the Brazilian tropical dry forest. Microbial Ecology. 75 (2): 447-458.spa
dcterms.referencesSun, J., Miller, J. B., Granqvist, E., Wiley-Kalil, A., Gobbato, E., Maillet, F., Maillet, F., Cottaz, S., Samain, E., Venkateshwaran, M., Fort, S., Morris, R. J., Ané, J., Dénarié, J., Oldroyd, G. E. (2015). Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. The Plant Cell. 27 (3): 823-838.spa
dcterms.referencesSmith, S. E., Jakobsen, I., Grønlund, M., Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology. 156 (3): 1050-1057.spa
dcterms.referencesStürmer, S. L., Bever, J. D., Morton, J. B. (2018). Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza. 28 (7): 587-603.spa
dcterms.referencesTejeda-Cruz, C., Mehltreter, K., Sosa, V. J. (2008). Indicadores ecológicos multi-taxonómicos. Agroecosistemas cafetaleros de Veracruz. Biodiversidad, Manejo y Conservación. 78: 271-278.spa
dcterms.referencesTipton, A. G., Middleton, E. L., Spollen, W. G., Galen, C. (2019). Anthropogenic and soil environmental drivers of arbuscular mycorrhizal community composition differ between grassland ecosystems. Botany. 97 (1): 85-99.spa
dcterms.referencesTorres-Benítez, A. J. (2013). Estudio de la composición fisicoquímica de los lodos fluviovolcánicos de Armero, Tolima, y su relación con los procesos de sucesión vegetal 25 años después de la erupción del volcán arenas del nevado del Ruíz. Tesis pregrado, Universidad del Tolima.spa
dcterms.referencesTurrini, A. & Giovannetti, M. (2012). Arbuscular mycorrhizal fungi in national parks, nature reserves and protected areas worldwide: a strategic perspective for their in situ conservation. Mycorrhiza. 22 (2): 81-97.spa
dcterms.referencesTchabi, A., Coyne, D., Hountondji, F., Lawouin, L., Wiemken, A., Oehl, F. (2008). Arbuscular mycorrhizal fungal communities in sub-Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza. 18 (4): 181-195.spa
dcterms.referencesThirkell, T. J., Charters, M. D., Elliott, A. J., Sait, S. M., Field, K. J. (2017). Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. Journal of Ecology. 105 (4): 921-929.spa
dcterms.referencesTrejo, D., Barois, I. & Sangabriel-Conde, W. (2016). Disturbance and land use effect on functional diversity of the arbuscular mycorrhizal fungi. Agroforestry Systems. 90 (2): 265-279.spa
dcterms.referencesvan Der Heijden, M. G., Wiemken, A., Sanders, I. R. (2003). Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co‐occurring plant. New Phytologist. 157 (3): 569-578.spa
dcterms.referencesvan der Heijden, M. G. A. & Horton, T. R. (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology. 97: 1139-1150.spa
dcterms.referencesvan der Heyde, M., Ohsowski, B., Abbott, L. K., Hart, M. (2017). Arbuscular mycorrhizal fungus responses to disturbance are context-dependent. Mycorrhiza. 27 (5): 431-440.spa
dcterms.referencesVerma, S. & Jayakumar, S. (2012). Impact of forest fire on physical, chemical and biological properties of soil: A Review. Proceedings of the International Academy of Ecology and Environmental Sciences. 2 (3): 168-176.spa
dcterms.referencesVerma, S. & Jayakumar, S. (2015). Post-fire regeneration dynamics of tree species in a tropical dry deciduous forest, Western Ghats, India. Forest Ecology and Management. 341: 75-82.spa
dcterms.referencesVerma, S. & Jayakumar, S. (2018). Effect of recurrent fires on soil nutrient dynamics in a tropical dry deciduous forest of Western Ghats, India. Journal of Sustainable Forestry. 37 (7): 678-690.spa
dcterms.referencesWang, J., Wang, G. G., Zhang, B., Yuan, Z., Fu, Z., Yuan, Y., Zhang, J. (2019). Arbuscular mycorrhizal fungi associated with tree species in a planted forest of eastern China. Forests. 10(5): 424.spa
dcterms.referencesWhitman, T., Whitman, E., Woolet, J., Flannigan, M. D., Thompson, D. K., Parisien, M. A. (2019). Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biology and Biochemistry. 138: 107571.spa
dcterms.referencesWu, B., Hogetsu, T., Isobe, K., Ishii, R. (2007). Community structure of arbuscular mycorrhizal fungi in a primary successional volcanic desert on the southeast slope of Mount Fuji. Mycorrhiza. 17 (6): 495-506.spa
dcterms.referencesXiang, X., Gibbons, S. M., Yang, J., Kong, J., Sun, R., Chu, H. (2015). Arbuscular mycorrhizal fungal communities show low resistance and high resilience to wildfire disturbance. Plant and Soil. 397 (1-2): 347-356.spa
dcterms.referencesXu, X., Chen, C., Zhang, Z., Sun, Z., Chen, Y., Jiang, J., Shen, Z. (2017). The influence of environmental factors on communities of arbuscular mycorrhizal fungi associated with Chenopodium ambrosioides revealed by MiSeq sequencing investigation. Scientific Reports. 7: 1-11.spa
dcterms.referencesZhang, Y., Guo, L. D. & Liu, R. J. (2004). Survey of arbuscular mycorrhizal fungi in deforested and natural forest land in the subtropical region of Dujiangyan, southwest China. Plant and Soil. 261 (1): 257-263.spa
dcterms.referencesZhang, X., Chen, B., & Ohtomo, R. (2015). Mycorrhizal effects on growth, P uptake and Cd tolerance of the host plant vary among different AM fungal species. Soil Science and Plant Nutrition. 61 (2): 359-368.spa
dcterms.referencesZhang, B., Li, S., Chen, S., Ren, T., Yang, Z., Zhao, H., Han, X. (2016). Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe. Scientific Reports. 6: 1-10.spa
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
13 1482 Hongos micorrízicos .pdf
Tamaño:
1.27 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: