Publicación:
Innate trypanolytic factors in triatomine hemolymph against Trypanosoma rangeli and T. cruzi: a comparative study in eight Chagas disease vectors

dc.contributor.authorSuárez Quevedo, Yazmin
dc.contributor.authorBarbosa Vinasco, Hamilton J.
dc.contributor.authorGutiérrez Garnizo, Sneider A.
dc.contributor.authorOlaya Morales, Jenny L.
dc.contributor.authorZabala González, Daniel
dc.contributor.authorCarranza Martínez, Julio C.
dc.contributor.authorGuhl Nannetti, Felipe
dc.contributor.authorCantillo Barraza, Omar
dc.contributor.authorVallejo, Gustavo A.
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.date.accessioned2021-12-10T08:07:57Z
dc.date.available2021-12-10T08:07:57Z
dc.date.issued2020-03-25
dc.description.abstractExiste información limitada sobre la inmunidad innata en triatominos contra Trypanosoma rangeli, un parásito humano, infeccioso y no patogénico, y T. cruzi, el agente casal de la enfermedad de Chagas. Sin embargo, esta información podría ayudar a identificar los factores que afectan la transmisión de los parásitos. Por lo tanto, nuestro objetivo fue abordar este vacío mediante el estudio de la actividad tripanolítica in vitro en la hemolinfa de insectos no infectados con T. rangeli o T. cruzi. Se examinaron ocho especies de triatominos, incluyendo Rhodnius prolixus, R. robustus, R. colombiensis, R. pallescens, R. pictipes, Triatoma dimidiata, T. maculata, and Panstrongylus geniculatus. La hemolinfa de las colonias de laboratorio de R. prolixus y R. robustus demostró una fuerte actividad tripanolítica contra algunos genotipos de T. rangeli y T. cruzi durante las primeras 14 h de incubación. Sin embargo, no se detectó actividad lítica a las 14 o 24 h usando hemolinfa de colonias de laboratorio de R. pallescens, R. pictipes, T. maculata y P. geniculatus, o de colonias de laboratorio o poblaciones silvestres de R. colombiensis y T. dimidiata. Este es el primer estudio comparativo de la actividad tripanolítica en la hemolinfa de diferentes especies de triatominos contra varios genotipos de T. rangeli y T. cruzi. Aunque las estructuras químicas de estos factores líticos, junto con los mecanismos que determinan su expresión en los insectos, no se han determinado completamente, su identificación permitirá nuestra comprensión de la inmunidad innata de los triatominos y su papel en la transmisión de los tripanosomas.spa
dc.description.abstractThere is limited information about the innate immunity of triatomines against Trypanosoma rangeli, an infectious, non-pathogenic human parasite, and T. cruzi, the causative agent of Chagas’ disease. This study aimed at addressing this gap by studying the in vitro trypanolytic hemolymph activity from insects not infected by T. rangeli or T. cruzi. Eight triatomine species were examined including Rhodnius prolixus, R. robustus, R. colombiensis, R. pallescens, R. pictipes, Triatoma dimidiata, T. maculata, and Panstrongylus geniculatus. The hemolymph of R. prolixus and R. robustus laboratory colonies demonstrated strong trypanolytic activity during the first 14 hours of parasite incubation with 81% lysis for the T. rangeli C genotype, 90% for the E genotype, 95% for T. cruzi discrete taxonomic unit (DTU) TcII, 94% for TcV, 96% for TcVI, 94% for Tcbat, and 90% for Tcmarinkellei. No lysis activity was detected 14 or 24 hours after parasite incubation with the hemolymph of insects from R. pictipes R. pallescens, P. geniculatus, and T. maculata colonies. Identical results (absence of lysis) were observed using hemolymph from R. colombiensis and T. dimidiata laboratory colonies and specimens captured in sylvatic environments. The hemolymph lytic activity against recently obtained cultures (95% decrease in live parasite count) and long-term T. cruzi TcII ones (96% decrease) was similar. Lytic activity was similar in hemolymph from R. prolixus nymphs, males and females and insects fed on chicken or mouse blood. This is the first comparative study of the trypanolytic activity of hemolymph from different triatomine species against T. rangeli and T. cruzi genotypes. Although the chemical structures of such lysis factors and the mechanisms determining their expression have not been fully determined, their identification furthers our understanding of triatomines’ innate immunity and their role in Trypanosoma transmission.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1097
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1184
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.publisher.placeBogotá, Colombiaspa
dc.relation.citationendpage104spa
dc.relation.citationissue170spa
dc.relation.citationstartpage88spa
dc.relation.citationvolume44spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.subject.proposalTrypanosoma cruzispa
dc.subject.proposalTrypanosoma cruzieng
dc.subject.proposalTrypanosoma rangelispa
dc.subject.proposalTrypanosoma rangelieng
dc.subject.proposalRhodnius prolixusspa
dc.subject.proposalRhodnius prolixuseng
dc.subject.proposalRhodnius robustusspa
dc.subject.proposalRhodnius robustuseng
dc.subject.proposalFactores tripanolíticosspa
dc.subject.proposalTrypanolytic factorseng
dc.subject.proposalCapacidad vectorialspa
dc.subject.proposalVectorial abilityeng
dc.subject.proposalInmunidad en insectosspa
dc.subject.proposalInsect immunityeng
dc.titleInnate trypanolytic factors in triatomine hemolymph against Trypanosoma rangeli and T. cruzi: a comparative study in eight Chagas disease vectorsspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentDataPaperspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAlvarenga, N.J. & Bronfen, E. (1982). Incapacity of the evolution of Trypanosoma cruzi in the hemocele of triatomids. Mem Inst Oswaldo Cruz. 77(4): 431-6. Portuguese.spa
dcterms.referencesAzambuja, P., García, E.S., Waniek, P.J., Vieira, C.S., Figueiredo, M.B., Gonzalez, M.S., Mello, C.B., Castro, D.P., Ratcliffe, N.A. (2017). Rhodnius prolixus: From physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. J Insect Physiol. 97: 45-65. Doi: 10.1016/j.jinsphys.2016.11.006spa
dcterms.referencesBaker, J.R., Miles, M.A., Godfrey, D.G., Barrett, T.V. (1978). Biochemical characterization of some species of Trypanosoma (Schizotrypanum) from bats (Microchiroptera). Am J Trop Med Hyg. 27(3): 483-91.spa
dcterms.referencesBeltrame-Botelho, I.T., Talavera-López, C., Andersson, B., Grisard, E.C., Stoco, P.H. (2016). A Comparative In Silico Study of the Antioxidant Defense Gene Repertoire of Distinct Lifestyle Trypanosomatid Species. Evol Bioinform Online. 12: 263-275.spa
dcterms.referencesBrehélin, M., Drift, L., Baud, L., Boemare, N. (1989). Insect haemolymph: Cooperation between humoral and cellular factors in Locusta migratoria. Insect Biochem. 19: 301-309spa
dcterms.referencesBrisse, S., Verhoef, J., Tibayrenc, M. (2001). Characterisation of large and small subunit rRNA and mini-exon genes further support the distinction of six Trypanosoma cruzi lineages. Int J Parasitol. 31 (11): 1218-26. Doi: 10.1016/ S0020-7519(01)00238-7spa
dcterms.referencesBuarque, D.S., Braz, G.R., Martins, R.M., Tanaka-Azevedo, A.M., Gomes, C.M., Oliveira, F.A., Schenkman, S., Tanaka, A.S. (2013). Differential expression profiles in the midgut of Triatoma infestans infected with Trypanosoma cruzi. PLoS Negl. Trop. Dis. 5: e61203spa
dcterms.referencesCastro, D.P., Moraes, C.S., Gonzalez, M.S., Ratcliffe, N.A., Azambuja, P., Garcia, E.S. (2012). Trypanosoma cruzi immune response modulation decreases microbiota in Rhodnius prolixus gut and is crucial for parasite survival and development. PLoS One. 7: e36591.spa
dcterms.referencesCerenius, L., Lee, B.L., Söderhäll, K. (2008). The proPO-system: Pros and cons for its role in invertebrate immunity. Trends Immunol. 29: 263-271. Doi: 10.1016/j.it.2008.02.009spa
dcterms.referencesDe Fuentes-Vicente, J.A., Cabrera-Bravo, M., Enríquez-Vara, J.N., Bucio-Torres, M.I., Gutiérrez-Cabrera, A.E., Vidal-López, D.G., Martínez-Ibarra, J.A., Salazar-Schettino, P.M., Córdoba-Aguilar, A. (2016). Relationships between altitude, triatomine (Triatoma dimidiata) immune response and virulence of Trypanosoma cruzi, the causal agent of Chagas’ disease. Med. Vet. Entomol. 31: 63-71spa
dcterms.referencesDe Stefani-Márquez, M.D., Rodrigues-Ottaiano, C., Mônica Oliveira, R., Pedrosa, A.L., Cabrine- Santos, M., Lages-Silva, E., Ramírez, L.E. (2006). Susceptibility of different triatomine species to Trypanosoma rangeli experimental infection. Vector Borne Zoonotic Dis. 6 (1): 50-56spa
dcterms.referencesFigueiredo, M.B., Genta, F.A, Garcia, E.S., Azambuja, P. (2008). Lipid mediators and vector infection: Trypanosoma rangeli inhibits Rhodnius prolixus hemocyte phagocytosis by modulation of phospholipase A2 and PAF-acetylhydrolase activities. J Insect Physiol. 54: 1528-37spa
dcterms.referencesGalvão, C. & Justi, S.A. (2015). An overview on the ecology of Triatominae (Hemiptera: Reduviidae). Acta Trop. 151: 116-25. Doi: 10.1016/j.actatropica.2015.06.006spa
dcterms.referencesGarcía, E.S., Machado, E.M., Azambuja, P. (2004a). Inhibition of hemocyte microaggregation reactions in Rhodnius prolixus larvae orally infected with Trypanosoma rangeli. Exp Parasitol. 107: 31-8.spa
dcterms.referencesGarcía, E.S., Machado, E.M., Azambuja, P. (2004b). Effects of eicosanoid biosynthesis inhibitors on the prophenoloxidase-activating system and microaggregation reactions in the hemolymph of Rhodnius prolixus infected with Trypanosoma rangeli. J Insect Physiol. 50: 157-65.spa
dcterms.referencesGuhl, F. & Vallejo, G.A. (2003). Trypanosoma (Herpetosoma) rangeli Tejera, 1920: An updated review. Mem Inst Oswaldo Cruz. 98(4): 435-42.spa
dcterms.referencesGurgel-Gonçalves, R., Ramalho, E.D., Duarte, M.A., Palma, A.R., Abad-Franch, F., Carranza, J.C., Cuba-Cuba, C.A. (2004). Enzootic transmission of Trypanosoma cruzi and T. rangeli in the Federal District of Brazil. Rev Inst Med Trop Sao Paulo. 46 (6):323-30spa
dcterms.referencesHoare, C.A. (1972). The trypanosomes of mammals: A zoological monograph. Oxford: Blackwell Scientific Publications. 749 p.p.spa
dcterms.referencesKanost, M.R., Gorman, M.J. (2008). Phenoloxidases in insect immunity. In: Beckage,N. (Ed.), Insect Immunology. Academic Press/Elsevier, San Diego, p. 69-96spa
dcterms.referencesLópez, L., Morales, G., Ursic, R., Wolff, M., Lowenberger, C. (2003). Isolation and characterization of a novel insect defensin from Rhodnius prolixus: A vector of Chagas disease. Insect Biochem. Mol. Biol. 33: 349-447.spa
dcterms.referencesMaia Da Silva, F., Junqueira, A.C., Campaner, M., Rodrigues, A.C., Crisante, G., Ramírez, L.E., Caballero, Z.C., Monteiro, F.A., Coura, J.R., Añez, N., Teixeira, M.M. (2007). Comparative phylogeography of Trypanosoma rangeli and Rhodnius (Hemiptera: Reduviidae) supports a long coexistence of parasite lineages and their sympatric vectors. Mol Ecol. 16 (16): 3361-73spa
dcterms.referencesMarcili, A., Lima, L., Cavazzana, M., Junqueira, A.C., Veludo, H.H., Maia Da Silva, F., Campaner, M., Paiva, F., Nunes, V.L., Teixeira, M.M. (2009). A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA. Parasitology. 136 (6): 641-55.spa
dcterms.referencesMello, C.B., García, E.S., Ratcliffe, N.A., Azambuja, P. (1995). Trypanosoma cruzi and Trypanosoma rangeli: Interplay with hemolymph components of Rhodnius prolixus. J Invertebr Pathol. 65 (3): 261-8.spa
dcterms.referencesMello, C.B., Azambuja, P., Garcia, E.S., Ratcliffe, N.A. (1996). Differential in vitro and in vivo behavior of three strains of Trypanosoma cruzi in the gut and hemolymph of Rhodnius prolixus. Exp. Parasitol. 82: 112-121spa
dcterms.referencesPereira ME, Andrade AF, Ribeiro JM. (1981). Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi. Science. 211: 597-600spa
dcterms.referencesPulido, X.C., Pérez, G., Vallejo, G.A. (2008). Preliminary characterization of a Rhodnius prolixus hemolymph trypanolytic protein, this being a determinant of Trypanosoma rangeli KP1(+) and KP1(-) subpopulations’ vectorial ability. Memorias do Instituto Oawaldo Cruz. 103 (2): 172-179.spa
dcterms.referencesSalazar-Antón, F., Urrea, D.A., Guhl, F., Arévalo, C., Azofeifa G., Urbina A., Blandón-Naranjo, M. , Sousa, O.E., Zeledón, R., Vallejo, G.A. (2009). Trypanosoma rangeli genotypes association with Rhodnius prolixus and R. pallescens allopatric distribution in Central America. Infection, Genetics and Evolution. 9: 1306-1310spa
dcterms.referencesSalcedo-Porras, N. & Lowenberger, C. (2019). The innate immune system of kissing bugs, vectors of chagas disease. Dev Comp Immunol. 98: 119-128. Doi: 10.1016/j.dci.2019.04.007spa
dcterms.referencesSánchez, I.P., Pulido, X.C., Carranza, J.C., Triana, O., Vallejo, G.A. (2005). Inmunidad Natural de Rhodnius prolixus (Hemiptera: Reduviidae: Triatominae) frente a la infección con Trypanosoma (Herpetosoma) rangeli KP1(-) aislados de Rhodnius pallescens, R. colombiensis y R. ecuadoriensis. Revista de la Asociación Colombiana de Ciencias Biológicas. 17: 108-118spa
dcterms.referencesSöderhäll, K. & Cerenius, L. (1998). Role of the prophenoloxidase-activating system ininvertebrates. Curr Opi. Immunol. 10: 23-28spa
dcterms.referencesSouto, R.P. & Zingales, B. (1993). Sensitive detection and strain classification of Trypanosoma cruzi by amplification of a ribosomal RNA sequence. Mol Biochem Parasitol. 62 (1): 45-52. Doi: /10.1016/0166-6851(93)90176-Xspa
dcterms.referencesSouto, R.P., Fernandes, O., Macedo, A.M., Campbell, D.A., Zingales, B. (1996). DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol Biochem Parasitol. 83 (2): 141-52. Doi: 10.1016/S0166-6851(96) 02755-7spa
dcterms.referencesStoco, P.H., Wagner, G., Talavera-Lopez, C., Gerber, A., Zaha, A., Thompson, C.E., Bartholomeu, D.C., Lückemeyer, D.D., Bahia, D., Loreto, E., Prestes, E.B., Lima, F.M., Rodrigues-Luiz, G., Vallejo, G.A., Filho, J.F., Schenkman, S., Monteiro, K.M., Tyler, K.M., Almeida, L.G., Ortiz, M.F., Chiurillo, M.A., Moraes, M.H., Cunha Ode. L., Mendonça-Neto, R., Silva, R., Teixeira, S.M., Murta, S.M., Sincero, T.C., Mendes, T.A., Urmenyi, T.P., Silva, V.G., Da Rocha, W.D., Andersson, B., Romanha, A.J., Steindel, M., Vasconcelos, A.T., Grisard, E.C. (2014). Genome of the Avirulent Human-Infective Trypanosome-Trypanosoma rangeli. PLoS Negl. Trop. Dis. 8 (9): e3176. Doi: 10.1371/ journal.pntd.0003176spa
dcterms.referencesUrrea, D.A., Carranza, J.C., Cuba-Cuba, C.A., Gurgel-Gonçalves, R., Guhl, F., Schofield, C.J., Triana O., Vallejo, G.A. (2005). Molecular characterisation of Trypanosoma rangeli strains isolated from Rhodnius ecuadoriensis in Perú, R. colombiensis in Colombia and R. pallescens in Panamá supports a co-evolutionary association between parasites and vectors. Infection, Genetics and Evolution. 5 (2): 123-129spa
dcterms.referencesUrrea, D.A., Herrera, C.P., Falla, A., Carranza, J.C., Cuba-Cuba, C., Triana-Chávez, O., Grisard, E.C., Guhl, F., Vallejo, G.A. (2011). Sequence analysis of the splicedleader intergenic region (SL-IR) and random amplified polymorphic DNA (RAPD) of Trypanosoma rangeli strains isolated from Rhodnius ecuadoriensis, R. colombiensis, R. pallescens and R. prolixus suggests a degree of co-evolution between parasites and vectors. Acta Tropica. 120: 59-66.spa
dcterms.referencesUrsic-Bedoya, R.J., Nazzari, H., Cooper, D., Triana, O., Wolff, M., Lowenberger, C. (2008). Identification and characterization of two novel lysozymes from Rhodnius prolixus, a vector of Chagas disease. J. Insect. Physiol. 54: 593-603.spa
dcterms.referencesUrsic-Bedoya, R., Buchhop, J., Joy, J.B., Durvasula, R., Lowenberger, C. (2011). Prolixicin: A novel antimicrobial peptide isolated from Rhodnius prolixus with differential activity against bacteria and Trypanosoma cruzi. Insect. Mol. Biol. 20: 775-786.spa
dcterms.referencesVallejo, G. A., Marinkelle, C. J., Guhl, F., de Sánchez, N. (1986). Mantenimiento en el laboratorio de Trypanosoma (Herpetosoma) rangeli Tejera, 1920. Revista de biología tropical. 34 (1): 75-81.spa
dcterms.referencesVallejo, G.A., Marinkelle, C.J., Guhl, F., de Sánchez, N. (1988). Behavior of the infection and morphologic differentiation of Trypanosoma cruzi and T. rangeli in the intestine of the vector Rhodnius prolixus. Rev Bras Biol. 48 (3): 577-87. Spanishspa
dcterms.referencesVallejo, G.A., Guhl, F., Carranza, J.C., Lozano, L.E., Sánchez, J.L., Jaramillo, J.C., Gualtero, D., Castañeda, N., Silva, J.C., Steindel, M. 2002. kDNA markers define two major Trypanosoma rangeli lineages in Latin-America. Acta Trop. 81 (1): 77-82.spa
dcterms.referencesVallejo, G.A., Suárez, Y., Olaya, J.L., Gutiérrez, S.A., Carranza, J.C. (2015). Trypanosoma rangeli: un protozoo infectivo y no patógeno para el humano que contribuye al entendimiento de la transmisión vectorial and la infección por Trypanosoma cruzi, agente causal de la Chagas’ disease. Rev. Acad. Col. Cienc. Exac. Fís. Nat. 39 (150): 111-122spa
dcterms.referencesVieira, C.S., Waniek, P.J., Mattos, D.P., Castro, D.P., Mello, C.B., Ratcliffe, N.A., García, E.S., Azambuja, P. (2014). Humoral responses in Rhodnius prolixus: Bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut. Parasit Vectors. 7: 232. Doi: 10.1186/1756-3305-7-232spa
dcterms.referencesVieira, C.S., Mattos, D.P., Waniek, P.J., Santangelo, J.M., Figueiredo, M.B., Gumiel, M., da Mota, F.F., Castro, D.P., Garcia, E.S., Azambuja, P. (2015). Rhodnius prolixus interaction with Trypanosoma rangeli: Modulation of the immune system and microbiota population. Parasit Vectors. 8: 135. Doi: 10.1186/s13071-015-0736-2spa
dcterms.referencesVieira, C.S., Waniek, P.J., Castro, D.P., Mattos, D.P., Moreira, O.C., Azambuja, P. (2016). Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Parasit.Vectors. 9: 119. Doi: 10.1186/s13071-016- 1398-4spa
dcterms.referencesVilla, L.M., Guhl, F., Zabala, D., Ramírez, J.D., Urrea, D.A., Hernández, D.C., Cucunubá, Z., Montilla, M., Carranza, J.C., Rueda, K., Trujillo, J.E., Vallejo, G.A. (2013). The identification of two Trypanosoma cruzi I genotypes from domestic and sylvatic transmission cycles in Colombia based on a single polymerase chain reaction amplification of the splicedleader intergenic region. Mem Inst Oswaldo Cruz. 108 (7): 932-5. Doi: 10.1590/0074- 0276130201spa
dcterms.referencesWalters, J. & Ratcliffe, N.A. (1983). Studies on the in vivo cellular reactions of insects: Fate of pathogenic and non-pathogenic bacteria in Galleria mellonellanodules. J Insect Physio. 29: 417-424. Doi: 10.1016/0022-1910(83)90069-0spa
dcterms.referencesWhitten, M., Sun, F., Tew, I., Schaub, G., Soukou, C., Nappi, A., Ratcliffe, N. (2007). Differential modulation of Rhodnius prolixus nitric oxide activities following challenge with Trypanosoma rangeli, Trypanosoma cruzi and bacterial cell wall components. Insect Biochem. Molec. Biol. 37: 440-452.spa
dcterms.referencesZingales, B., Andrade, S.G., Briones, M.R., Campbell, D.A., Chiari, E., Fernandes, O., Guhl, F., Lages-Silva, E., Macedo, A.M., Machado, C.R., Miles, M.A., Romanha, A.J., Sturm, N.R., Tibayrenc, M., Schijman, A.G. (2009). Second Satellite Meeting. A new consensus for Trypanosoma cruzi intraspecific nomenclature: Second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 104 (7): 1051-4.spa
dcterms.referencesZingales, B., Miles, M.A., Campbell, D.A., Tibayrenc, M., Macedo, A.M., Teixeira, M.M., Schijman, A.G., Llewellyn, M.S., Lages-Silva, E., Machado, C.R., Andrade, S.G., Sturm, N.R. (2012). The revised Trypanosoma cruzi subspecific nomenclature: Rationale, epidemiological relevance and research applications. Infect Genet Evol. 12 (2): 240-53. Doi: 10.1016/j.meegid.2011.12.009spa
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2. Innate trypanolytic factors in triatomine hemolymph.pdf
Tamaño:
474.15 KB
Formato:
Adobe Portable Document Format
Descripción:
Ciencias biomédicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: