Publicación: Plataforma nanoestructurada multifuncional para liberación secuencial de moléculas terapéuticas
dc.contributor.author | González-Jiménez, Edgar E. | |
dc.contributor.corporatename | Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.date.accessioned | 2023-05-26T00:48:25Z | |
dc.date.available | 2023-05-26T00:48:25Z | |
dc.date.issued | 2022-06-28 | |
dc.description.abstract | A partir de nanocajas metálicas de doble pared monoporo sintetizadas (DWSPNb) por efecto Kirkendall y reemplazo galvánico, se propone una potencial plataforma multifuncional nanoestructurada con capacidad de liberación secuencial de agentes moleculares para uso terapéutico. Para evaluar la plataforma se realizaron métodos numéricos basados en las dimensiones, morfología y composición de las nanocajas sintetizadas. Para combinaciones de dos moléculas farmacológicas de interés, el los coeficientes de difusión se determinaron en función de la distancia a las paredes de la nanocaja y de la concentración. La simulación realizada para la liberación de estas dos moléculas de la cavidad interna y el nanocanal formado entre las dos paredes de la nanocaja mostró la cinética secuencial requerida. Este comportamiento permite programar entregas controladas en tiempo y lugar para reducir la resistencia a los fármacos duales y consecuentemente optimizar la dosis necesaria, así como evitar los efectos secundarios derivados. La composición metálica convirtió a la nanocaja en una nanoantena optotérmica que permite el control de la liberación y entrega de la carga a través de polímeros sensibles a la temperatura y, además, su uso potencial para el tratamiento fotodinámico y el diagnóstico por imágenes. | spa |
dc.description.abstract | From synthesized metallic double-walled single-pore nanoboxes (DWSPNb) by Kirkendall effect and galvanic replacement, a potential nanostructured multifunctional platform with the capacity for sequential release of molecular agents for therapeutic use is proposed. To evaluate the platform, numerical methods based on the dimensions, morphology, and composition of the synthesized nanoboxes were performed. For combinations of two pharmacological molecules of interest, the diffusion coefficients were determined as a function of the distance to the walls of the nanobox and the concentration. The simulation carried out for the release of these two molecules from the internal cavity and the nanochannel formed between the two walls of the nanobox showed the required sequential kinetics. This behavior allows to schedule controlled deliveries in time and place to reduce resistance to dual drugs and consequently optimize the necessary dose, as well as avoid any derived secondary effects. The metallic composition turned the nanobox into an opto-thermal nanoantenna enabling the control of cargo release and delivery through polymers sensitive to temperature and, additionally, its potential use for photodynamic treatment and diagnostic imaging. | eng |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | https://doi.org/10.18257/raccefyn.1660 | |
dc.identifier.eissn | 2382-4980 | spa |
dc.identifier.issn | 0370-3908 | spa |
dc.identifier.uri | https://repositorio.accefyn.org.co/handle/001/2092 | |
dc.language.iso | eng | spa |
dc.publisher | Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.relation.citationendpage | 355 | spa |
dc.relation.citationissue | 179 | spa |
dc.relation.citationstartpage | 339 | spa |
dc.relation.citationvolume | 46 | spa |
dc.relation.ispartofjournal | Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.proposal | Nanoplataforma | spa |
dc.subject.proposal | Nanoplatform | eng |
dc.subject.proposal | Lanzamiento secuencial | spa |
dc.subject.proposal | Sequential releaseSequential release | eng |
dc.subject.proposal | Nanocajas | spa |
dc.subject.proposal | Nanoboxes | eng |
dc.subject.proposal | Entrega de medicamentos | spa |
dc.subject.proposal | Drug delivery | eng |
dc.subject.proposal | Nanoantena | spa |
dc.subject.proposal | Nanoantenna | eng |
dc.subject.proposal | Difusión molecular | spa |
dc.subject.proposal | Molecular diffusion | eng |
dc.title | Plataforma nanoestructurada multifuncional para liberación secuencial de moléculas terapéuticas | spa |
dc.title | Multifunctional nanostructured platform for sequential release of therapeutic molecules | eng |
dc.type | Artículo de revista | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
dc.type.version | info:eu-repo/semantics/updatedVersion | spa |
dcterms.audience | Estudiantes, Profesores, Comunidad científica | spa |
dcterms.references | Ahyja, G., Pathak, K. (2009). Porous Carriers for Controlled/Modulated Drug Delivery. Indian Journal of Pharmaceutical Sciences, 2, 599-607. DOI: 10.4103/0250-474X.59540 | spa |
dcterms.references | Augustine, R., Hasan, A., Primavera, R., Wilson, R., Thakor, A., Kevadiya, D. (2020). Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Materialstoday Communications, 25, 101692. https://doi.org/10.1016/j.mtcomm.2020.101692 | spa |
dcterms.references | Aziz, G., Patarroyo, J., Parramon, S., Arenal, Raul., Duchamp, M., González, E., Henrard, L., Bastús, N., Dunin, R., Puntes, V., Arbio, J. (2016). Tuning the plasmonic response up: Hollow cuboid metal nanostructures. ACS Photonics, 3 (5), 770-779. http://dx.doi.org/10.1021/acsphotonics.5b00667 | spa |
dcterms.references | Bruno, G., Trani, N., Hood, R., Zabre, (2018). Unexpected behaviors in molecular transport through size-controlled nanochannels down to the ultra-nanoscale. Nature Communications,9, 1682. https://doi.org/10.1038/s41467-018-04133-8 | spa |
dcterms.references | Buyl, P. (2018). Tidynamics: A tiny package to compute the dynamics of stochastic and molecular simulations. Journal of Open-Source Software, 3 (28), 877. | spa |
dcterms.references | Cao, M., Wang, M., Gu, N. (2009). Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications. Journal Physics Chemical C, 113(4), 1217-1221. https://doi.org/10.1021/jp808000x | spa |
dcterms.references | Carnovale, C., Bryant, G., Shukla, R., Bansal, V. (2016). Size, shape and surface chemistry of nano-gold dictate its cellular interactions, uptake and toxicity. Progress in Materials Science, 83, 152-190. https://doi.org/10.1016/j.pmatsci.2016.04.003 | spa |
dcterms.references | Calandrini, V., Pellegrini, E., Calligari, P., Hinsen, K., Kneller, G. R. (2011). NMoldyn-Interfacing Spectroscopic Experiments, Molecular Dynamics Simulations and Models for Time Correlation Functions. Collection SFN, 12, 201-232. DOI:10.1051/sfn/201112010 | spa |
dcterms.references | Chen, Z., Li, B., Xie, X., Zeng, F., Wu, S. (2018). A sequential enzyme-activated and light-triggered pro-prodrug nanosystem for cancer detection and therapy. Journal of Materials Chemistry B, 6, 2547-2556. https://doi.org/10.1039/C7TB01989K | spa |
dcterms.references | Cho, H., Kwon, G. (2011). Polymeric Micelles for Neoadjuvant Cancer Therapy and Tumor-Primed Optical Imaging. ACS Nano, 5, 8721-8729. https://doi.org/10.1021/nn202676u | spa |
dcterms.references | Deirram, N., Zhang, Ch., Kermaniyan, S., Johnston, A., Such, G. (2019). pH-Responsive Polymer Nanoparticles for Drug Delivery. Macromolecular Rapid Communicatios, 40, 1-23.https://doi.org/10.1002/marc.201800917 | spa |
dcterms.references | Esquivel, R., Canale, I., Ramirez, M., Hernández, P., Zavala, P., Álvarez, E., Acuña, A. (2017).Nanobarras de oro recubiertas de poli(N-isopropilacrilamida) mediadas por una capa de quitosano tiolado: sensibilidad al pH térmico y propiedades ópticas. e-Polymers, 18, 163-174. https://doi.org/10.1515/epoly-2017-0135 | spa |
dcterms.references | Fievet, F., Langier, J., Blim, B., Beaudoin, B., Figlarz. (1989). Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics, 32, 198-205. | spa |
dcterms.references | Gibson, J., Khanal, B., Zubarev, R. (2007). Paclitaxel-Functionalized Gold Nanoparticles. Journal of the American Chemistry Society, 129, 11653. | spa |
dcterms.references | Gonzalez, E., Arbiol, J., Puntes, V. (2011). Carving at the nanoscale: Sequential galvanic exchange and Kirkendall growth at room temperature. Science, 334, 1377-1380. DOI: 10.1126/science.1212822 | spa |
dcterms.references | Gonzalez, E., Puntes, V. Casals, E. (2015). Nanomateriales: Nanopartículas Coloidales. Nanocitec, Bogotá. | spa |
dcterms.references | Gonzalez, E. (2016). Control de la superficie y el volumen en la nanoescala para la configuración y el diseño de nanodispositivos. Revista de la Academia Colombiana de Ciencias Exactas Fisicas y Naturales, 40 (157), 590-599. https://doi.org/10.18257/raccefyn.398 | spa |
dcterms.references | Gonzalez, E., Gil, E., Castro, C., Téllez, N., Riberos, T., González, F. (2008). Citotoxicidad in vitro de células tumorales con nanotubos de carbono de pared simple funcionalizados con polisulfónico M-aminobenceno y con polietilenglicol. Universitas Medica, 49, 317-327. | spa |
dcterms.references | Hamada, H., Ishihara, K., Masuoka, N., Mikuni, K., Nakajima, N. (2006). Enhancement of watersolubility and bioactivity of paclitaxel using modified cyclodextrins. Journal of Bioscience and Bioengineering, 102, 369-371. | spa |
dcterms.references | Han, J., Fu, J., Schoch, R. (2008). Molecular sieving using nanofilters: past, present and future. Lab on a Chip, 8(1), 23. https://doi.org/10.1039/B714128A | spa |
dcterms.references | Harrell, C., Kohli, P., Siwy, Z., Marti,n C. (2004). DNA-Nanotube artificial ion channels. Journal of the American Chemistry Society, 126(48), 15646-15647. | spa |
dcterms.references | Holt, J. K., Park, H., Wang, Y., Stadermann, M., Artyukhin, A., Grigoropoulos, C., Noy, A., Bakajin, O. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312, 1034-1037. | spa |
dcterms.references | Karniadakis, G., Beskok, A., Aluru, N. (2005). Microflows and Nanoflows: Fundamentals and Simulation, Springer, New York. | spa |
dcterms.references | Kim, J., Piao, Y., Hyeon, T. (2009). Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chemical Society Reviews Journal, 38, 372-390. DOI https://doi.org/10.1039/B709883A | spa |
dcterms.references | Kojic, M., Milosevic, M., Kojic, N., Ferrari, M., Ziemys, A. (2011). On diffusion in nanospace.Journal of the Serbian Society for Computational Mechanics, 5(1), 104-118. | spa |
dcterms.references | Konno, T., Watanabe, J., Ishiara, K. (2003). Enhanced solubility of paclitaxel using watersoluble and biocompatible 2-methacryloyloxyethyl phosphorylcholine polymers. Journal of Biomedical Materials Research Part A, 65, 209-214. DOI:10.1002/jbm.a.10481 | spa |
dcterms.references | Li, N., Zhang, P., Huang, C., Song, Y., Garg, S., Luan, Y. (2015). Co-delivery of doxorubicin hydrochloride and verapamil hydrochloride by pH-sensitive polymersomes for the reversal of multidrug resistance. RCS Advances, 5, 77986-77995. https://doi.org/10.1039/C5RA15313A | spa |
dcterms.references | Li, W., Cai, X., Kim, C., Sun, G, Zhang, Y., Deng, R., Yang, M., Chen, J., Achilefu, S., Wang,L., Xia, Y. (2011). Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound. Nanoscale, 3(4), 1724-1730. https://doi.org/10.1039/C0NR00932F | spa |
dcterms.references | Mahmound, M., Snyder, B., ANDEl-Sayed, M. (2010). Surface Plasmon Fields and Coupling in the Hollow Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy. Theory and Experiment. The Journal of Physical Chemistry C, 114, 74367443. https://doi.org/10.1021/jp9109018 | spa |
dcterms.references | Maginn, E. J., Messerly, R. A., Carlson, D. J.; Roe, D. R., Elliott, J. R. (2019). Best Practices for Computing Transport Properties 1. Self-Diffusivity and Viscosity from Equilibrium Molecular Dynamics. Living Journal of Computational Molecular Science, 1(1), 6324. DOI:https://doi.org/10.33011/livecoms.1.1.6324 | spa |
dcterms.references | Malone, D., Anderson, J. (1978). Hindered diffusion of particles through small pores. Chemical Engineering Science, 33, 1429-1440. https://doi.org/10.1016/0009-2509(78)85192-6 | spa |
dcterms.references | Maji, S., Cesur, B., Zhang, Z., De Geest, B., Hoogenboom, R. (2016). Poly(N-isopropylacrylamide)coated gold nanoparticles as colourimetric temperature and salt sensors. Polymer Chemistry, 7, 1705-1710. https://doi.org/10.1039/C5PY01959A | spa |
dcterms.references | Mitchell, M., Billingsley, M., Haley, R., Wechsler, M., Peppas, N., Langer, R. (2020). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20, 101-124. DOI: 10.1038/s41573-020-0090-8 | spa |
dcterms.references | Mohammadi, M., Salami, M., Mamaqani, H., Golshan, M. (2017). Synthesis and investigation of dual pH- and temperature-responsive behaviour of poly[2-(dimethylamino)ethyl methacrylate]-grafted gold nanoparticles. Applied Organometallic Chemistry, 31, e3702.https://doi.org/10.1002/aoc.3702 | spa |
dcterms.references | Morton, S., Lee, M., Dend, A., Dreaden, E., Siouve, E., Shopsowitz, K., Shah, N., Yaffe, M.,Hammoun, P. (2014). A Nanoparticle-Based Combination Chemotherapy Delivery System for Enhanced Tumor Killing by Dynamic Rewiring of Signaling Pathways. Science Signaling,7 (325), 44. Doi: 10.1126/scisignal.2005261 | spa |
dcterms.references | Nakamura, J., Nakajima, N., Matsumura, K and Hyo, S-H. (2010). Water-soluble Taxol Conjugates with Dextran and Targets Tumor Cells by Folic Acid Immobilization. Anticancer Research, 30, 903-909. | spa |
dcterms.references | Niaz, S., Forbes, B. And Raimi-Abrahan, T. (2022). Exploiting Endocytosis for Non-Spherical Nanoparticle Cellular Uptake. Nanomanufacturing, 2, 1-16. https://doi.org/10.3390/nanomanufacturing2010001 | spa |
dcterms.references | Ofridam, F., Tarhini, M., Lebaz, N., Gagnière, É., Mangin, D., Elaissari, A. (2021). pH-sensitive polymers: Classification and some fine potential applications. Polymers for Advanced Technologies, 32, 1455-1484. DOI:10.1002/pat.5230 | spa |
dcterms.references | Palanikumar, L., Jeena, M., Kim, K., Oh, J., Kin, C., Park., Ryu, J.H. (2017). Spatiotemporally and SequentiallyControlled Drug Release from Polymer Gatekeeper–Hollow Silica Nanoparticles. Scientific Reports, 7, 46540. https://doi.org/10.1038/srep46540 | spa |
dcterms.references | Parak, J. W. (2011). Complex colloidal assembly. Science, 334, 1359-1360. DOI: 10.1126/science.1215080 | spa |
dcterms.references | Price, E., Gesquiere, A. (2019). An in vitro assay and artificial intelligence approach to determine rate constants of nanomaterial-cell interactions. Scientific Reports, 9, 13943. https://doi.org/10.1038/s41598-019-50208-x | spa |
dcterms.references | Punfa, W., Suzuki, S., Pitchakarn, P., Yodkeeree, S., Naiki, T., Takahashi, S., Limtrakul, P.(2014). Curcumin-loaded PLGA Nanoparticles Conjugated with Anti- P-glycoprotein Antibody to Overcome Multidrug Resistance. Asian Pacific Journal of Cancer Prevention, 15, 9249-9258. DOI: 10.7314/apjcp.2014.15.21.9249 | spa |
dcterms.references | Qiu, J., Liu, Y., Xia, Y. (2021). Radiolabeling of Gold Nanocages for Potential Applications in Tracking, Diagnosis, and Image-Guided Therapy. Advanced Healthcare Materials, 10, 1-11. | spa |
dcterms.references | Qui, J., Xie, M., Wu, T., Qin, D., Xia, Y. (2020). Gold nanocages for effective photothermal conversion and related applications. Chemical Science, 11, 12955-12973. | spa |
dcterms.references | Sadeghi, M., Jeon, S., Kwon, H-J. (2019). Enhancing Thermal Effect of Focused Ultrasound Therapy Using Gold Nanoparticles. IEEE Transaction NanoBioscience. DOI 10.1109/TNB.2019.2937327 | spa |
dcterms.references | Sanzari, I., Buratti, E., Huang, R., Tusan, C., Dinelli, F., Evans, N., Prodromakis, T., Bertoldo, M. (2020). Poly(N-isopropylacrylamide) based thin microgel films for use in cell culture applications. Scientific Reports, 10, 6126. DOI: 10.1038/s41598-020-63228-9 | spa |
dcterms.references | Thomas, J. and McGaughey, A. (2009). Water flow in carbon nanotubes: transition to subcontinuum transport. Physics Review Letters, 102, 184502. | spa |
dcterms.references | Thomas, J., Rja, R. (2012). Nanopore and nanoparticle catalysts. Chemical Records, 1(6), 448-466. | spa |
dcterms.references | Vines, J., Yoon, J-H., Ryu, N-E., Lim, D.J., Park, H. (2019). Gold nanoparticles for phototermal cancer therapy. Frontiers in Chemistry, 7, 1-16. https://doi.org/10.3389/fchem.2019.00167 | spa |
dcterms.references | WHO. (2022) Cancer, https://www.who.int/news-room/fact-sheets/detail/cancer, consulted 10 February 2022. | spa |
dcterms.references | Xu, W., Thapa, R., Liu, D., Nissen, T., Granroth, T., Narvanen, A., Suvanto, M., Santos, H., Lehto, V. (2015). Smart porous silicon nanoparticles with polymeric coatings for sequential combination therapy. Molecular Pharmaceutics, 12, 4038-4047. https://doi.org/10.1021/acs.molpharmaceut.5b00473 | spa |
dcterms.references | Yao, Y., Zhou, Y., Liu, L., Xu, Y., Chen, Q., Wnag, Y., Wu, S., Deng, Y., Zhang, J., Shao, A. (2020). Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Frontiers in Molecular Biosciences, 7, 1-14. https://doi.org/10.3389/fmolb.2020.00193 | spa |
dcterms.references | Yu, j., Feliciano, T., Li, W., Lee, A., Odom, T. (2018). Gold nanoparticle size and shape effects on cellular uptake and intracellular distribution of siRNA nanoconstruct. Bioconjugate Chemistry, 28(6), 1791-1800. Doi: 10.1021/acs.bioconjchem.7b00252 | spa |
dcterms.references | Zhao, D., Yang, N., Wei, Y., Jin, Q., Want, Y., He, Y., Yang, Y., Han, B., Zhang, S., Wnag, D. (2020). Sequential drug release via chemical diffusion and physical barriers enabled by hollow multishelled structures. Nature Communication, 11, 1-7. https://doi.org/10.1038/s41467-020-18177-2 | spa |
dcterms.references | Zhu, F., Tan, G., Zhong, Y., Jian, Y., Cai, L., Yu, Z., Liu, S., Ren, F. (2019). Smart nanoplatform for sequential drug release and enhanced chemo‑thermal effect of dual drug loaded gold nanorod vesicles for cancer therapy. Journal of Nanobiotechnology, 17, 44. https://doi.org/10.1186/s12951-019-0473-3 | spa |
dcterms.references | Ziemys, A., Grattoni, A., Fine, D., Hussain, F., Ferrari, M. (2010). Confinement Effects on Monosaccharide Transport in Nanochannels. The Journal of Physical Chemistry B 114, 11117-11126. https://doi.org/10.1021/jp103519d | spa |
dcterms.references | Ziemys, A., Kojic, M., Milosevic, M., Kojic, N., Hussain, F., Ferrari, M., Grattoni, A. (2011).Hierarchical modeling of diffusive transport through nanochannels by coupling molecular dynamics with finite element method. Journal of Computational Physics, 230, 5722-5731.DOI: 10.1016/j.jcp.2011.03.054 | spa |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 3 1660 Multifunctional nanostructured.pdf
- Tamaño:
- 1.07 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: