Publicación:
Caracterización del conjugado no covalente de grafeno y ácido fólico mediante espectroscopia Raman y métodos computacionales

dc.contributor.authorCastillo, John J.
dc.contributor.authorOrduz, Angie E.
dc.contributor.authorRozo, Ciro E.
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.date.accessioned2021-11-15T15:27:11Z
dc.date.available2021-11-15T15:27:11Z
dc.date.issued2018-04-13
dc.description.abstractLa preparación de compuestos híbridos de biomoléculas y estructuras de tamaño nanométrico es de especial interés para el desarrollo de aplicaciones en el campo de los biosensores y la entrega de fármacos, entre otros. En este estudio se llevó a cabo la preparación de un conjugado formado por grafeno y ácido fólico cuya caracterización se hizo mediante espectroscopia Raman y el método computacional de la teoría del funcional de la densidad (DFT). El conjugado no covalente se obtuvo mediante un método rápido y sencillo de tipo “one pot”. La espectroscopia Raman permitió evidenciar la funcionalización del grafeno con el ácido fólico mediante el análisis de las relaciones en la intensidad de las señales Raman correspondiente a las bandas G y D. El método DFT mostró que la unión de grafeno y ácido fólico ocurre por la acción de fuerzas de enlace de tipo no covalente, como las interacciones de tipo π-π, y de puentes de hidrógeno. La obtención de este tipo de conjugados permitiría explorar su aplicación en el diseño de biosensores que detecten células cancerígenas con sobreexpresión de receptores de folato, con el fin de facilitar un diagnóstico eficaz y oportuno del cáncer.spa
dc.description.abstractHybrid compounds formed by biomolecules and nanometric structures are attracting interest for the development of applications in the fields of biosensors and drug delivery. In this study we prepared a grapheme-folic acid conjugate which we characterized by Raman spectroscopy and the density functional theory (DFT) computational method. The non-covalent conjugate was performed through a simple and fast one-pot method. The analysis of ratio intensity of D and G bands in the Raman spectroscopy evidenced graphene functionalization. The DFT method showed that the bond between graphene and folic acid occurs by non-covalent π-π and hydrogen bond interactions. Graphene and folic acid conjugates will allow the design of biosensors for the detection of cancer cells overexpressing folate receptors using analytic devices for a faster, more effective and timely diagnosis of cancer.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.524
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1021
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.publisher.placeBogotá, Colombiaspa
dc.relation.citationendpage103spa
dc.relation.citationissue162spa
dc.relation.citationstartpage96spa
dc.relation.citationvolume42spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.subject.proposalGrafenospa
dc.subject.proposalGrapheneeng
dc.subject.proposalEspectroscopía Ramanspa
dc.subject.proposalRaman spectroscopyeng
dc.subject.proposalÁcido Fólicospa
dc.subject.proposalFolic acideng
dc.subject.proposalMétodos computacionalesspa
dc.subject.proposalComputational methodseng
dc.titleCaracterización del conjugado no covalente de grafeno y ácido fólico mediante espectroscopia Raman y métodos computacionalesspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentDataPaperspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAllen, M., Tung, M., Kaner, R. (2010). Honeycomb carbon: A review of graphene. Chem Rev. 110: 132-145spa
dcterms.referencesAyala, I.G., Cordero, N.A. (2012) Interaction of sodium bisulfate with mono- and bi-Layer graphene. J Nanoparticle Res. 14: 1-7.spa
dcterms.referencesBalapanuru, J., Yang, J.X., Xiao, S., Bao, Q., Jahan, M., Polavarapu, L., Wei, J., Xu, Q.H., Loh, K.P. (2010). A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew Chemie - Int Ed. 49: 6549-53.spa
dcterms.referencesBecke, A.D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 98: 5648spa
dcterms.referencesBecke, A.D. (1996). Density-functional thermochemistry. IV. A new dynamic correlation functional and implications for exact-exchange mixing. J Chem Phys. 104: 1040-6spa
dcterms.referencesBose, S., Kuila, T., Mishra, A.K., Kim, N.H., Lee, J.H. (2011) Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid. Nanotechnology. 22: 405603spa
dcterms.referencesCasiraghi, C. (2011). Raman intensity of graphene. Phys Status Solidi Basic Res. 248: 2593-7.spa
dcterms.referencesCastillo JJ, Svendsen WE, Rozlosnik N, Escobar P, Martínez F. Castillo-León J. (2013). Detection of cancer cells using a graphene modified peptide nanotube-folic acid. Analyst. 138: 965-972.spa
dcterms.referencesCastillo J.J., Rindzevicius T., Novoa L. V., Martínez F., Svendsen W.E., Rozlosnik N., Boisen A., Escobar, P., Martínez, F., Castillo, J. (2013). Non-covalent conjugates of single-walled carbon nanotubes and folic acid for interaction with cells over-expressing folate receptors. J Mater Chem B. 1: 1475-81.spa
dcterms.referencesCastillo, J.J., Rindzevicius, T., Wu, K., Rozo, C.E., Schmidt, M.S., Boisen, A. (2015). Silver-capped silicon nanopillar platforms for adsorption studies of folic acid using surface enhanced Raman spectroscopy and density functional theory. J Raman Spect. 46: 1087-1094spa
dcterms.referencesCastillo, J.J., Rozo, C.E., Castillo-León, J., Martínez, F., Rindzevicius, T., Svendsen, W.E., Rozlosnik, N. (2013). Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid. Chem Phys Lett. 564: 60-4spa
dcterms.referencesCastillo, J.J., Torres, M.H., Molina, D.R., Castillo-León, J., Martínez, F., Escobar P.,Svendsen, W.E. (2012) Monitoring the functionalization of single-walled carbon nanotubes with chitosan and folic acid by two-dimen-sional diffusion-ordered NMR spectroscopy. Carbon. 50:2691-7spa
dcterms.referencesCho, Y., Min, S.K., Yun, J., Kim, W.Y., Tkatchenko, A., Kim, K.S.(2013). Noncovalent interactions of DNA bases with naph-thalene and graphene. J Chem Theory Comput. 9: 2090-6spa
dcterms.referencesChoi, E.Y., Han, T.H., Hong, J., Kim, J.E., Lee, S.H., Kim, H.W., Kim, S.O. (2010). Noncovalent functionalization of graphene with end-functional polymers. J Mater Chem. 20: 1907spa
dcterms.referencesDresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., Saito, R. (2010). Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10: 751-8spa
dcterms.referencesFrisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, J., Cheeseman, J. (2010). Gaussian 09, Revision B.01, Inc. Wallingford, CT, 2010spa
dcterms.referencesHu, C., Liu, Y., Qin, J., Nie, G., Lei, B., Xiao, Y. (2013). Fabrication of reduced graphene oxide and sliver nanoparticle hybrids for Raman detection of absorbed folic acid: A potential cancer diagnostic probe. ACS Appl Mater Interfaces. 12: 4760-4768spa
dcterms.referencesJeffrey,A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press. p. 56-71.spa
dcterms.referencesMartz, E. (2004). Help, Index & Glossary for Protein Explorer. http://www.umass.edu/microbio/chime/pe_beta/pe/protexpl/igloss.htm?q=microbio/chime/explorer/igloss.htmspa
dcterms.referencesKamińska, A., Dzięcielewski, I., Weyher, J.L., Waluk, J., Gawinkowski, S., Sashuk, V., Fiałkowski, M., Sawicka, M., Suski, T., Porowski, S., Hołyst, R. (2011). Highly reproducible, stable and multiple regenerated surface-enhanced Raman scattering substrate for biomedical appli-cations. J Mater Chem. 21: 8662spa
dcterms.referencesLi, Y.X., Zhu, J., Chen, Y., Zhang, J., Wang, J., Zhang, B., He, J.,Blau, W.J. (2011). Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine. Nanotechnology. 22: 205704spa
dcterms.referencesLong, B., Manning, M., Burke, M., Szafranek, B.N., Visimberga, G., Thompson, D., et al. (2012). Non-covalent functionali-zation of graphene using self-assembly of alkane-amines. Adv Funct Mater. 22: 717-25spa
dcterms.referencesManna, A.K., Pati, S.K. (2013). Computational studies on non-covalent interactions of carbon and boron fullerenes with graphene. ChemPhysChem. 14: 1844-52.spa
dcterms.referencesNi, Z., Wang, Y., Yu, T., Shen, Z. (2008). Raman spectroscopy and imaging of graphene. Nano Res. 1: 273-91spa
dcterms.referencesRassolov, V.A. (2001). 6-31G* basis set for third-row atoms. J Comput Chem. 22: 976-84.spa
dcterms.referencesStewart, J.J. (2007). Optimization of parameters for semi-empirical methods V: Modification of NDDO approxi-mations and application to 70 elements. J Mol Model. 13:1173-213.spa
dcterms.referencesWojtoniszak, M., Rogińska, D., Machaliński, B., Drozdzik, M., Mijowska, E. (2013). Graphene oxide functionalized with methylene blue and its performance in singlet oxygen generation. Mater Res Bull. 48: 2636-9.spa
dcterms.referencesXu, Z., Meher, B.R., Eustache, D., Wang, Y. (2014). Insight into the interaction between DNA bases and defective graphenes: Covalent or non-covalent. J Mol Graph Model. 47: 8-17spa
dcterms.referencesZhao, J.X., Wang, H.X., Gao, B., Wang, X.G., Cai, Q.H., Wang, X.Z. (2012). Chemical functionalization of graphene via aryne cycloaddition: A theoretical study. J Mol Model. 18: 2861-8.spa
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
11. Caracterización del conjugado no covalente de grafeno.pdf
Tamaño:
723.19 KB
Formato:
Adobe Portable Document Format
Descripción:
Ciencias Químicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: