Publicación: Caracterización del conjugado no covalente de grafeno y ácido fólico mediante espectroscopia Raman y métodos computacionales
dc.contributor.author | Castillo, John J. | |
dc.contributor.author | Orduz, Angie E. | |
dc.contributor.author | Rozo, Ciro E. | |
dc.contributor.corporatename | Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.date.accessioned | 2021-11-15T15:27:11Z | |
dc.date.available | 2021-11-15T15:27:11Z | |
dc.date.issued | 2018-04-13 | |
dc.description.abstract | La preparación de compuestos híbridos de biomoléculas y estructuras de tamaño nanométrico es de especial interés para el desarrollo de aplicaciones en el campo de los biosensores y la entrega de fármacos, entre otros. En este estudio se llevó a cabo la preparación de un conjugado formado por grafeno y ácido fólico cuya caracterización se hizo mediante espectroscopia Raman y el método computacional de la teoría del funcional de la densidad (DFT). El conjugado no covalente se obtuvo mediante un método rápido y sencillo de tipo “one pot”. La espectroscopia Raman permitió evidenciar la funcionalización del grafeno con el ácido fólico mediante el análisis de las relaciones en la intensidad de las señales Raman correspondiente a las bandas G y D. El método DFT mostró que la unión de grafeno y ácido fólico ocurre por la acción de fuerzas de enlace de tipo no covalente, como las interacciones de tipo π-π, y de puentes de hidrógeno. La obtención de este tipo de conjugados permitiría explorar su aplicación en el diseño de biosensores que detecten células cancerígenas con sobreexpresión de receptores de folato, con el fin de facilitar un diagnóstico eficaz y oportuno del cáncer. | spa |
dc.description.abstract | Hybrid compounds formed by biomolecules and nanometric structures are attracting interest for the development of applications in the fields of biosensors and drug delivery. In this study we prepared a grapheme-folic acid conjugate which we characterized by Raman spectroscopy and the density functional theory (DFT) computational method. The non-covalent conjugate was performed through a simple and fast one-pot method. The analysis of ratio intensity of D and G bands in the Raman spectroscopy evidenced graphene functionalization. The DFT method showed that the bond between graphene and folic acid occurs by non-covalent π-π and hydrogen bond interactions. Graphene and folic acid conjugates will allow the design of biosensors for the detection of cancer cells overexpressing folate receptors using analytic devices for a faster, more effective and timely diagnosis of cancer. | eng |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | https://doi.org/10.18257/raccefyn.524 | |
dc.identifier.uri | https://repositorio.accefyn.org.co/handle/001/1021 | |
dc.language.iso | spa | spa |
dc.publisher | Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.relation.citationendpage | 103 | spa |
dc.relation.citationissue | 162 | spa |
dc.relation.citationstartpage | 96 | spa |
dc.relation.citationvolume | 42 | spa |
dc.relation.ispartofjournal | Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.rights | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.source | Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.subject.proposal | Grafeno | spa |
dc.subject.proposal | Graphene | eng |
dc.subject.proposal | Espectroscopía Raman | spa |
dc.subject.proposal | Raman spectroscopy | eng |
dc.subject.proposal | Ácido Fólico | spa |
dc.subject.proposal | Folic acid | eng |
dc.subject.proposal | Métodos computacionales | spa |
dc.subject.proposal | Computational methods | eng |
dc.title | Caracterización del conjugado no covalente de grafeno y ácido fólico mediante espectroscopia Raman y métodos computacionales | spa |
dc.type | Artículo de revista | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | DataPaper | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dcterms.audience | Estudiantes, Profesores, Comunidad científica colombiana | spa |
dcterms.references | Allen, M., Tung, M., Kaner, R. (2010). Honeycomb carbon: A review of graphene. Chem Rev. 110: 132-145 | spa |
dcterms.references | Ayala, I.G., Cordero, N.A. (2012) Interaction of sodium bisulfate with mono- and bi-Layer graphene. J Nanoparticle Res. 14: 1-7. | spa |
dcterms.references | Balapanuru, J., Yang, J.X., Xiao, S., Bao, Q., Jahan, M., Polavarapu, L., Wei, J., Xu, Q.H., Loh, K.P. (2010). A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew Chemie - Int Ed. 49: 6549-53. | spa |
dcterms.references | Becke, A.D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 98: 5648 | spa |
dcterms.references | Becke, A.D. (1996). Density-functional thermochemistry. IV. A new dynamic correlation functional and implications for exact-exchange mixing. J Chem Phys. 104: 1040-6 | spa |
dcterms.references | Bose, S., Kuila, T., Mishra, A.K., Kim, N.H., Lee, J.H. (2011) Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid. Nanotechnology. 22: 405603 | spa |
dcterms.references | Casiraghi, C. (2011). Raman intensity of graphene. Phys Status Solidi Basic Res. 248: 2593-7. | spa |
dcterms.references | Castillo JJ, Svendsen WE, Rozlosnik N, Escobar P, Martínez F. Castillo-León J. (2013). Detection of cancer cells using a graphene modified peptide nanotube-folic acid. Analyst. 138: 965-972. | spa |
dcterms.references | Castillo J.J., Rindzevicius T., Novoa L. V., Martínez F., Svendsen W.E., Rozlosnik N., Boisen A., Escobar, P., Martínez, F., Castillo, J. (2013). Non-covalent conjugates of single-walled carbon nanotubes and folic acid for interaction with cells over-expressing folate receptors. J Mater Chem B. 1: 1475-81. | spa |
dcterms.references | Castillo, J.J., Rindzevicius, T., Wu, K., Rozo, C.E., Schmidt, M.S., Boisen, A. (2015). Silver-capped silicon nanopillar platforms for adsorption studies of folic acid using surface enhanced Raman spectroscopy and density functional theory. J Raman Spect. 46: 1087-1094 | spa |
dcterms.references | Castillo, J.J., Rozo, C.E., Castillo-León, J., Martínez, F., Rindzevicius, T., Svendsen, W.E., Rozlosnik, N. (2013). Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid. Chem Phys Lett. 564: 60-4 | spa |
dcterms.references | Castillo, J.J., Torres, M.H., Molina, D.R., Castillo-León, J., Martínez, F., Escobar P.,Svendsen, W.E. (2012) Monitoring the functionalization of single-walled carbon nanotubes with chitosan and folic acid by two-dimen-sional diffusion-ordered NMR spectroscopy. Carbon. 50:2691-7 | spa |
dcterms.references | Cho, Y., Min, S.K., Yun, J., Kim, W.Y., Tkatchenko, A., Kim, K.S.(2013). Noncovalent interactions of DNA bases with naph-thalene and graphene. J Chem Theory Comput. 9: 2090-6 | spa |
dcterms.references | Choi, E.Y., Han, T.H., Hong, J., Kim, J.E., Lee, S.H., Kim, H.W., Kim, S.O. (2010). Noncovalent functionalization of graphene with end-functional polymers. J Mater Chem. 20: 1907 | spa |
dcterms.references | Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., Saito, R. (2010). Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10: 751-8 | spa |
dcterms.references | Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, J., Cheeseman, J. (2010). Gaussian 09, Revision B.01, Inc. Wallingford, CT, 2010 | spa |
dcterms.references | Hu, C., Liu, Y., Qin, J., Nie, G., Lei, B., Xiao, Y. (2013). Fabrication of reduced graphene oxide and sliver nanoparticle hybrids for Raman detection of absorbed folic acid: A potential cancer diagnostic probe. ACS Appl Mater Interfaces. 12: 4760-4768 | spa |
dcterms.references | Jeffrey,A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press. p. 56-71. | spa |
dcterms.references | Martz, E. (2004). Help, Index & Glossary for Protein Explorer. http://www.umass.edu/microbio/chime/pe_beta/pe/protexpl/igloss.htm?q=microbio/chime/explorer/igloss.htm | spa |
dcterms.references | Kamińska, A., Dzięcielewski, I., Weyher, J.L., Waluk, J., Gawinkowski, S., Sashuk, V., Fiałkowski, M., Sawicka, M., Suski, T., Porowski, S., Hołyst, R. (2011). Highly reproducible, stable and multiple regenerated surface-enhanced Raman scattering substrate for biomedical appli-cations. J Mater Chem. 21: 8662 | spa |
dcterms.references | Li, Y.X., Zhu, J., Chen, Y., Zhang, J., Wang, J., Zhang, B., He, J.,Blau, W.J. (2011). Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine. Nanotechnology. 22: 205704 | spa |
dcterms.references | Long, B., Manning, M., Burke, M., Szafranek, B.N., Visimberga, G., Thompson, D., et al. (2012). Non-covalent functionali-zation of graphene using self-assembly of alkane-amines. Adv Funct Mater. 22: 717-25 | spa |
dcterms.references | Manna, A.K., Pati, S.K. (2013). Computational studies on non-covalent interactions of carbon and boron fullerenes with graphene. ChemPhysChem. 14: 1844-52. | spa |
dcterms.references | Ni, Z., Wang, Y., Yu, T., Shen, Z. (2008). Raman spectroscopy and imaging of graphene. Nano Res. 1: 273-91 | spa |
dcterms.references | Rassolov, V.A. (2001). 6-31G* basis set for third-row atoms. J Comput Chem. 22: 976-84. | spa |
dcterms.references | Stewart, J.J. (2007). Optimization of parameters for semi-empirical methods V: Modification of NDDO approxi-mations and application to 70 elements. J Mol Model. 13:1173-213. | spa |
dcterms.references | Wojtoniszak, M., Rogińska, D., Machaliński, B., Drozdzik, M., Mijowska, E. (2013). Graphene oxide functionalized with methylene blue and its performance in singlet oxygen generation. Mater Res Bull. 48: 2636-9. | spa |
dcterms.references | Xu, Z., Meher, B.R., Eustache, D., Wang, Y. (2014). Insight into the interaction between DNA bases and defective graphenes: Covalent or non-covalent. J Mol Graph Model. 47: 8-17 | spa |
dcterms.references | Zhao, J.X., Wang, H.X., Gao, B., Wang, X.G., Cai, Q.H., Wang, X.Z. (2012). Chemical functionalization of graphene via aryne cycloaddition: A theoretical study. J Mol Model. 18: 2861-8. | spa |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 11. Caracterización del conjugado no covalente de grafeno.pdf
- Tamaño:
- 723.19 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Ciencias Químicas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: