Publicación:
Colocación con funciones de base radial para la solución de modelos matemáticos en fenómenos de transporte

dc.contributor.authorFlórez-Escobar, Whady Felipe
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.date.accessioned2022-11-01T03:13:29Z
dc.date.available2022-11-01T03:13:29Z
dc.date.issued2021-09-16
dc.description.abstractEste trabajo presenta los principales métodos con funciones de base radial para la solución de modelos matemáticos en fenómenos de transporte, basados ​​en ecuaciones diferenciales parciales. Como casos de aplicación se presentan algunos ejemplos de solución de problemas de dinámica de fluidos acoplados, para ilustrar la potencia, generalidad y sencillez de estas técnicas.spa
dc.description.abstractThis paper presents the main methods with radial base functions for the solution of mathematical models in transport phenomena, based on partial differential equations. As application cases, some examples of the solution of coupled fluid dynamics problems are presented, to illustrate the power, generality and simplicity of these techniques.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1370
dc.identifier.eissn2382-4980spa
dc.identifier.issn0370-3908spa
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1998
dc.language.isospaspa
dc.publisherRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationendpage937spa
dc.relation.citationissue176spa
dc.relation.citationstartpage916spa
dc.relation.citationvolume45spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.proposalColocaciónspa
dc.subject.proposalCollocationeng
dc.subject.proposalFunciones de base radialspa
dc.subject.proposalRadial basis functionseng
dc.titleColocación con funciones de base radial para la solución de modelos matemáticos en fenómenos de transportespa
dc.titleCollocation with radial basis functions for the solution of mathematical models in transport phenomenaeng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dcterms.audienceEstudiantes, Profesores, Comunidad cientificaspa
dcterms.referencesAftab, W., Moinuddin, M., y Shaikh, M. S. (2014). A Novel Kernel for RBF Based Neural Networks. Abstract and Applied Analysis, 2014(), 176253. doi: 10.1155/2014/176253spa
dcterms.referencesBerg, P., y Ladipo, K. (2009). Exact solution of an electro-osmotic flow problem in a cylindrical channel of polymer electrolyte membranes. Proceedings of the Royal Society of London Series A, 465(), 2663–2679.spa
dcterms.referencesBird, R. B., Armstrong, R. C., y Hassager, O. (1987). Dynamics of polymeric liquids. vol. 1: Fluid mechanics. Wiley Interscience,(), .spa
dcterms.referencesBochner, S. (1941, may). Hilbert Distances and Positive Definite Functions. Annals of Mathematics, 42(3), 647–656. Descargado de http://www.jstor.org/stable/1969252 doi: 10.2307/1969252spa
dcterms.referencesBoztosun, I., y Charafi, A. (2002). An analysis of the linear advection–diffusion equation using mesh-free and mesh-dependent methods. Engineering Analysis with Boundary Elements, 26(10), 889–895. doi: https://doi.org/10.1016/S0955-7997(02)00053-Xspa
dcterms.referencesBuhmann, M. D. (2000). Radial basis functions. Acta Numerica, 9(), 1–38. doi: 10.1017/S0962492900000015spa
dcterms.referencesCarroll, C. P., y Joo, Y. L. (2006). Electrospinning of viscoelastic Boger fluids: Modeling and experiments. Physics of Fluids,(),. doi: 10.1063/1.2200152spa
dcterms.referencesChantasiriwan, S. (2004). Cartesian grid methods using radial basis functions for solving Poisson, Helmholtz, and diffusion–convection equations. Engineering Analysis with Boundary Elements, 28(12), 1417–1425. doi: https://doi.org/10.1016/j.enganabound.2004.08.004spa
dcterms.referencesChejne J, F. (2016, jul.). Una aproximación a la construcción de modelos matemáticos para la descripción de la naturaleza. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat., 40(155),353-365. doi: 10.18257/raccefyn.339spa
dcterms.referencesChen, C. S., Fan, C. M., y Wen, P. H. (2012). The method of approximate particular solutions for solving certain partial differential equations. Numerical Methods for Partial Differential Equations, 28(2), 506–522. doi: 10.1002/num.20631spa
dcterms.referencesCheng, A.-D. (2000). Particular solutions of Laplacian, Helmholtz-type, and polyharmonic operators involving higher order radial basis functions. Engineering Analysis with Boundary Elements, 24(7), 531–538. doi: https://doi.org/10.1016/S0955-7997(00)00033-3spa
dcterms.referencesCheng, A. H. D., y Hong, Y. (2020). An overview of the method of fundamental solutions -Solvability, uniqueness, convergence, and stability. Engineering Analysis with Boundary Elements, 120(), 118–152. doi: https://doi.org/10.1016/j.enganabound.2020.08.013spa
dcterms.referencesChinchapatnam, P. P., Djidjeli, K., y Nair, P. B. (2007). Radial basis function meshless method for the steady incompressible Navier–Stokes equations. International Journal of Computer Mathematics, 84(10), 1509–1521. doi: 10.1080/00207160701308309spa
dcterms.referencesDehghan, M., Abbaszadeh, M., y Mohebbi, A. (2014). The numerical solution of nonlinear high dimensional generalized benjamin–bona–mahony–burgers equation via the meshless method of radial basis functions. Computers Mathematics with Applications, 68(3), 212 - 237.spa
dcterms.referencesDehghan, M., y Nikpour, A. (2013). Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method. Applied Mathematical Modelling, 37(18), 8578–8599. doi: https://doi.org/10.1016/j.apm.2013.03.054spa
dcterms.referencesFasshauer, G. E. (1997). Solving partial differential equations by collocation with radial basis functions. En In: Surface fitting and multiresolution methods a. le m’ehaut’e, c. rabut and l.l. schumaker (eds.), vanderbilt (pp. 131–138). University Press.spa
dcterms.referencesFasshauer, G. E. (2007). Meshfree Approximation Methods with Matlab. WORLD SCIENTIFIC. Descargado de https://www.worldscientific.com/doi/abs/10.1142/6437 doi: 10.1142/6437spa
dcterms.referencesFeng, J. (2002). The stretching of an electrified non-newtonian jet: A model for electrospinning. Physics of fluids, 14(11), 3912–3926.spa
dcterms.referencesFeng, J. J. (2003). Stretching of a straight electrically charged viscoelastic jet. Journal of Non-Newtonian Fluid Mechanics,(),. doi: 10.1016/S0377-0257(03)00173-3spa
dcterms.referencesFlorez, W., Bustamante, C., Giraldo, M., y Hill, A. (2012). Local mass conservative Hermite interpolation for the solution of flow problems by a multi-domain boundary element approach. Applied Mathematics and Computation, 218(11), . doi: 10.1016/j.amc.2011.12.015spa
dcterms.referencesFornberg, B., y Lehto, E. (2011). Stabilization of RBF-generated finite difference methods for convective PDEs. Journal of Computational Physics, 230(6), 2270–2285. doi: https://doi.org/10.1016/j.jcp.2010.12.014spa
dcterms.referencesFranke, C., y Schaback, R. (1998, jul). Solving partial differential equations by collocation using radial basis functions. Applied Mathematics and Computation, 93(1), 73–82. doi: 10.1016/s0096-3003(97)10104-7spa
dcterms.referencesGranados, J., Power, H., y Bustamante, C. (2018). A global particular solution meshless approach for the four-sided lid-driven cavity flow problem in the presence of magnetic fields. Computers and Fluids, 160(), . doi: 10.1016/j.compfluid.2017.10.027spa
dcterms.referencesHaider, A., Haider, S., y Kang, I.-K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), 1165–1188.spa
dcterms.referencesHohman, M. M., Shin, M., Rutledge, G., y Brenner, M. P. (2001). Electrospinning and electrically forced jets. I. Stability theory. Physics of Fluids,(), . doi: 10.1063/1.1383791spa
dcterms.referencesHon, Y. C., y Schaback, R. (2001). On unsymmetric collocation by radial basis functions. Applied Mathematics and Computation, 119(2), 177–186. doi: https://doi.org/10.1016/S0096-3003(99)00255-6spa
dcterms.referencesHubbert, S., L.Gia, Q. T., y Morton, T. M. (2015). Spherical Radial Basis Functions, Theory and Applications. Springer.spa
dcterms.referencesJackson, S. J., Power, H., Giddings, D., y Stevens, D. (2017). The stability of immiscible viscous fingering in Hele-Shaw cells with spatially varying permea bility. Computer Methods in Applied Mechanics and Engineering, 320(), 606–632. Descargado de https://www.sciencedirect.com/science/article/pii/S0045782516312373 doi: https://doi.org/10.1016/j.cma.2017.03.030spa
dcterms.referencesJumarhon, B., Amini, S., y Chen, K. (2000, sep). The Hermite collocation method using radial basis functions. Engineering Analysis with Boundary Elements, 24(7-8), 607–611. doi: 10.1016/s0955-7997(00)00041-2spa
dcterms.referencesKamyabi, A., Kermani, V., y Kamyabi, M. (2019). Improvements to the meshless generalized finite difference method. Engineering Analysis with Boundary Elements, 99(), 233–243. doi: https://doi.org/10.1016/j.enganabound.2018.11.002spa
dcterms.referencesKansa, E. J. (1990). Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers & Mathematics with Applications, 19(8), 147–161. doi: https://doi.org/10.1016/0898-1221(90)90271-Kspa
dcterms.referencesLevesley, J., y Ragozin, D. L. (2007). Radial basis interpolation on homogeneous manifolds: convergence rates. Advances in Computational Mathematics, 27(2), 237–246.doi: 10.1007/s10444-005-9000-1spa
dcterms.referencesLi, D. (2004). Electrokinetics in microfluidics (Vol. 2). Elsevier.spa
dcterms.referencesMadych, W., y Nelson, S. (1990, jan). Multivariate interpolation and conditionally positive definite functions. II. Mathematics f Computation, 54(189), 211–230. doi: 10.1090/S0025-5718-1990-0993931-7spa
dcterms.referencesMadych, W. R., y Nelson, S. A. (1990). Multivariate interpolation and conditionally positive definite functions. ii. Mathematics of Computation, 54(189), 211–230.spa
dcterms.referencesMai-Duy, N., y Tran-Cong, T. (2002). Mesh-free radial basis function network methods with domain decomposition for approximation of functions and numerical solution of Poisson’s equations. Engineering Analysis with Boundary Elements, 26(2), 133–156. doi: https://doi.org/10.1016/S0955-7997(01)00092-3spa
dcterms.referencesMicchelli, C. A. (1986). Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation, 2(1), 11–22. doi: 10.1007/BF01893414spa
dcterms.referencesOrsini, P., Power, H., y Lees, M. (2011). The Hermite radial basis function control volume method for multi-zones problems; A non-overlapping domain decomposition algorithm. Computer Methods in Applied Mechanics and Engineering, 200(5), 477–493. doi: https://doi.org/10.1016/j.cma.2010.05.001spa
dcterms.referencesOrsini, P., Power, H., Morvan, H., y Lees, M. (2010). An implicit upwinding volume element method based on meshless radial basis function techniques for modelling transport phenomena. International Journal for Numerical Methods in Engineering, 81(1), 1–27. doi: 10.1002/nme.2682spa
dcterms.referencesOruc¸,Ö. (2021). A radial basis function finite difference (RBF-FD) method for numerical simulation of interaction of high and low frequency waves: Zakharov–Rubenchik equations. Applied Mathematics and Computation, 394(), 125787. doi: https://doi.org/10.1016/j.amc.2020.125787spa
dcterms.referencesPopov, H., V. Power. (1996). A domain decomposition on the dual reciprocity approach. Boundary Elements Communications,(), .spa
dcterms.referencesPowell, M. J. D. (1994). The uniform convergence of thin plate splineinterpolation in two dimensions. Numerische Mathematik, 68(1), 107–128. doi: 10.1007/s002110050051spa
dcterms.referencesRusso, G., Capasso, V., Nicosia, G., y Romano, V. (2016). Progress in industrial mathematics at ecmi 2014. Springer.spa
dcterms.referencesSadeghi, A., Azari, M., y Chakraborty, S. (2017, dec). H2 forced convection in rectangular microchannels under a mixed electroosmotic and pressure-driven flow. International Journal of Thermal Sciences, 122(), 162–171. doi: 10.1016/j.ijthermalsci.2017.08.019spa
dcterms.referencesSadeghi, A., Kazemi, Y., y Saidi, M. H. (2013, aug). Joule heating effects in electrokinetically driven flow through rectangular microchannels: An analytical approach. Nanoscale and Microscale Thermophysical Engineering, 17(3), 173–193. doi: 10.1080/15567265.2013.776150spa
dcterms.referencesSarra, S. A. (2006). Integrated multiquadric radial basis function approximation methods. Computers Mathematics with Applications, 51(8), 1283–1296. Descargado de https://www.sciencedirect.com/science/article/pii/S0898122106000848 doi: https://doi.org/10.1016/j.camwa.2006.04.014spa
dcterms.referencesSchaback, R. (1995). Multivariate interpolation and approximation by translates of a basis function the space of functions (1.1) often..spa
dcterms.referencesSchaback, R. (2007). A practical guide to radial basis functions..spa
dcterms.referencesSchoenberg, I. J. (1938, may). Metric Spaces and Completely Monotone Functions. Annals of Mathematics, 39(4), 811–841. Descargado de http://www.jstor.org/stable/1968466 doi: 10.2307/1968466spa
dcterms.referencesShampine, L., Muir, P., y Xu, H. (2006). A user-friendly fortran bvp solver. J. Numer. Anal. Ind. Appl. Math, 1(2), 201–217.spa
dcterms.referencesStevens, D., y Power, H. (2015). The radial basis function finite collocation approach for capturing sharp fronts in time dependent advection problems. Journal of Computational Physics, 298(), 423–445. Descargado de https://www.sciencedirect.com/science/article/pii/S0021999115003666 doi: https://doi.org/10.1016/j.jcp.2015.05.032spa
dcterms.referencesStevens, D., Power, H., y Cliffe, K. A. (2013). A solution to linear elasticity using locally supported RBF collocation in a generalised finite-difference mode. Engineering Analysis with Boundary Elements, 37(1), 32–41. doi: https://doi.org/10.1016/j.enganabound.2012.08.005spa
dcterms.referencesStevens, D., Power, H., Meng, C. Y., Howard, D., y Cliffe, K. A. (2013). An alternative local collocation strategy for high-convergence meshless PDE solutions, using radial basis functions. J. Comput. Phys., 254(1), 52–75.spa
dcterms.referencesTiago, C. M., y Leitão, V. M. A. (2006). Application of radial basis functions to linear and nonlinear structural analysis problems. Computers Mathematics with Applications, 51(8), 1311–1334. doi: https://doi.org/10.1016/j.camwa.2006.04.008spa
dcterms.referencesWendland, H. (1995). Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics, 4(1), 389–396. Descargado de https://doi.org/10.1007/BF02123482 doi: 10.1007/BF02123482spa
dcterms.referencesWertz, J., Kansa, E. J., y Ling, L. (2006). The role of the multiquadric shape parameters in solving elliptic partial differential equations. Computers Mathematics with Applications, 51(8), 1335–1348. doi: https://doi.org/10.1016/j.camwa.2006.04.009spa
dcterms.referencesWu, Z. (1998). Solving pde with radial basis function and the error estimation, advances in computational mathematics, lecture notes on pure and applied mathematics. En In: Proceedings of the guangzhou international symposium,z. chen, y. li, c.a. micchelli,y. xu (eds.) (Vol. 202).spa
dcterms.referencesWu, Z., y Zhang, S. (2013). Conservative multiquadric quasi-interpolation method for Hamiltonian wave equations. Engineering Analysis with Boundary Elements, 37(7), 1052–1058. doi: https://doi.org/10.1016/j.enganabound.2013.04.011spa
dcterms.referencesZerroukat, M., Power, H., y Chen, C. S. (1998a). A numerical method for heat transfer problems using collocation and radial basis functions. International Journal for Numerical Methods in Engineering, 42(7), 1263-1278.spa
dcterms.referencesZerroukat, M., Power, H., y Chen, C. S. (1998b). A numerical method for heat transfer problems using collocation and radial basis functions. International Journal for Numerical Methods in Engineering, 42(7), 1263-1278. doi: https://doi.org/10.1002/(SICI)1097-0207(19980815)42:7.1263::AID-NME431.3.0.CO;2-Ispa
dcterms.referencesZhang, X., Chen, C., Chen, M., y Li, Z. (2016). Localized method of approximate particular solutions for solving unsteady Navier-Stokes problem. j, 40(3), . doi: 10.1016/j.apm.2015.09.048spa
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
20 1370 LaTex Colocación con funciones de base radial.pdf
Tamaño:
1.39 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: