Publicación: Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes
dc.contributor.author | Gutiérrez, Luis C. | |
dc.contributor.author | Castaño, Luis F. | |
dc.contributor.author | Gómez, Jorge A. | |
dc.contributor.author | Quijano, Jairo C. | |
dc.contributor.author | Herrera Ramírez, Jorge A. | |
dc.contributor.author | Hoyos, Alejandro | |
dc.contributor.author | Da Silva Nunez, Luiz C. | |
dc.contributor.author | Vélez, Francisco J. | |
dc.contributor.author | Aristizabal, Victor H. | |
dc.contributor.corporatename | Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.date.accessioned | 2021-11-15T15:31:24Z | |
dc.date.available | 2021-11-15T15:31:24Z | |
dc.date.issued | 2018-06-28 | |
dc.description.abstract | Los sensores basados en el análisis de la distribución de intensidades del patrón de interferencia modal a la salida de una fibra óptica son conocidos como sensores ópticos basados en specklegramas de fibra óptica (Fiber Specklegram Sensors, FSSs). En este trabajo se muestran los specklegramas, simulados numéricamente mediante el método de los elementos finitos, de una fibra óptica Thorlabs 1550BHP perturbada mecánicamente, y se hace uso de la información global o de regiones del specklegrama mediante el procesamiento digital de imágenes a través de un análisis de correlación. Los resultados muestran como la correlación entre imágenes se puede usar como valor de cuantificación para la medición de fuerzas, y cómo la división del patrón por zonas de interés puede mejorar las características metrológicas del sensor. | spa |
dc.description.abstract | Fiber Specklegram Sensors (FSSs) are sensors based on the analysis of specklegrams, i.e., the intensity distribution of the modal interference pattern at the output of an optical fiber. By using a finite element method, this work shows numerically simulated specklegrams of an optical fiber Thorlabs 1550BHP under a mechanical perturbation. We employ digital image correlation to analyze the behavior of these specklegrams with different applied forces. The image correlation analysis is applied over the whole specklegram or over selected regions. The results show that the correlation between images is a suitable quantifier of the applied force. We also show that the analysis of selected regions improves the metrological parameters of these sensors. | eng |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | https://doi.org/10.18257/raccefyn.608 | |
dc.identifier.uri | https://repositorio.accefyn.org.co/handle/001/1030 | |
dc.language.iso | spa | spa |
dc.publisher | Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.relation.citationendpage | 188 | spa |
dc.relation.citationissue | 163 | spa |
dc.relation.citationstartpage | 182 | spa |
dc.relation.citationvolume | 42 | spa |
dc.relation.ispartofjournal | Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.rights | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.source | Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales | spa |
dc.subject.proposal | Specklegramas de fibra óptica | spa |
dc.subject.proposal | Fiber Specklegram Sensors | eng |
dc.subject.proposal | Perturbaciones físicas | spa |
dc.subject.proposal | Physical Perturbations | eng |
dc.subject.proposal | Sensores de fibra óptica | spa |
dc.subject.proposal | Optical Fiber sensors | eng |
dc.subject.proposal | Simulación numérica | spa |
dc.subject.proposal | Numerical simulation | eng |
dc.title | Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes | spa |
dc.type | Artículo de revista | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | DataPaper | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dcterms.audience | Estudiantes, Profesores, Comunidad científica colombiana | spa |
dcterms.references | Aristizabal, V. H., Hoyos, A., Rueda, E., Gomez, N. D., & Gomez, J. A. (2015). Effect of wavelength on metrological characteristics of non-holographic fiber specklegram sensor. Photonic Sensors, 5 (1). http://doi.org/10.1007/s13320-014-0210-3 | spa |
dcterms.references | Arístizabal, V. H., Vélez, F. J., Rueda, E., Gómez, N. D., & Gómez, J. A. (2016). Numerical modeling of fiber specklegram sensors by using finite element method (FEM). Optics Express, 24 (24): 27225-27238. http://doi.org/10.1364/OE.24.027225 | spa |
dcterms.references | Aristizabal, V. H., Velez, F. J., & Torres, P. (2006). Numerical model and analysis of optical fibers with internal electrodes. Revista Colombiana de Física. 38 (1): 173-176. Retrieved from http://revcolfis.org/publicaciones/vol38_1/resumenes/3801173.htm | spa |
dcterms.references | Aristizabal, V. H., Vélez, F. J., & Torres, P. (2004). Modeling of photonic crystal fibers with the Scalar Finite Element Method. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 5622). http://doi.org/10.1117/12.591051 | spa |
dcterms.references | Aristizabal, V. H., Vélez, F. J., & Torres, P. (2006). Analysis of photonic crystal fibers: Scalar solution and polarization correction. Optics Express. 14 (24). http://doi.org/10.1364/OE.14.011848 | spa |
dcterms.references | Crammond, G., Boyd, S. W., & Dulieu-Barton, J. M. (2013). Speckle pattern quality assessment for digital image correlation. Optics and Lasers in Engineering. 51 (12): 1368-1378. http://doi.org/10.1016/j.optlaseng.2013.03.014 | spa |
dcterms.references | Darío Gómez, N., & Gómez, J. A. (2013). Effects of the speckle size on non-holographic fiber specklegram sensors. Optics and Lasers in Engineering. 51 (11): 1291-1295. http://doi.org/10.1016/j.optlaseng.2013.05.007 | spa |
dcterms.references | Efendioglu, H. S. (2017). A Review of Fiber-Optic Modal Modulated Sensors: Specklegram and Modal Power Distri-bution Sensing. IEEE Sensors Journal. 17 (7): 2055-2064. http://doi.org/10.1109/JSEN.2017.2658683 | spa |
dcterms.references | Fujiwara, E., Marques dos Santos, M. F., & Suzuki, C. K.(2017). Optical fiber specklegram sensor analysis by speckle pattern division. Applied Optics. 56 (6): 1585. http://doi.org/10.1364/AO.56.001585 | spa |
dcterms.references | Fujiwara, E., Wu, Y. T., dos Santos, M. F. M., Schenkel, E. A., & Suzuki, C. K. (2017). Development of a tactile sensor based on optical fiber specklegram analysis and sensor data fusion technique. Sensors and Actuators A: Physical. 263:677-686. http://doi.org/10.1016/j.sna.2017.07.031 | spa |
dcterms.references | Fujiwara, E., Wu, Y. T., & Suzuki, C. K. (2012). Vibration-based specklegram fiber sensor for measurement of properties of liquids. Optics and Lasers in Engineering. 50 (12): 1726-1730. http://doi.org/10.1016/j.optlaseng.2012.06.018 | spa |
dcterms.references | Gasvik, K. J. (2002). Optical Metrology (3rd ed.). Chichester, England: John Wiley & Sons Ltd. | spa |
dcterms.references | Gianino, P. D., & Bendow, B. (1981). Calculations of stress-induced changes in the transverse refractive-index profile of optical fibers. Applied Optics. 20 (3): 430. http://doi.org/10.1364/AO.20.000430 | spa |
dcterms.references | Gómez, J. A., Lorduy G., H., & Salazar, Á. (2011). Improvement of the dynamic range of a fiber speckleg\ram sensor based on volume speckle recording in photorefractive materials. Optics and Lasers in Engineering. 49 (3): 473-480. http://doi.org/10.1016/j.optlaseng.2010.11.017 | spa |
dcterms.references | Gómez, J. A., Lorduy G., H., & Salazar, Á. (2011). Influence of the volume speckle on fiber specklegram sensors based on four-wave mixing in photorefractive materials. Optics Communications. 284 (4): 1008-1014. http://doi.org/10.1016/j.optcom.2010.10.037 | spa |
dcterms.references | Gómez, J. A., & Salazar, Á. (2012). Self-correlation fiber speckle-gram sensor using volume characteristics of speckle patterns. Optics and Lasers in Engineering. 50 (5): 812-815. http://doi.org/10.1016/j.optlaseng.2012.01.002 | spa |
dcterms.references | Gubarev, F., Li, L., Klenovskii, M., & Glotov, A. (2016). Speckle pattern processing by digital image correlation. MATEC Web of Conferences. 48: 4003. http://doi.org/10.1051/matecconf/20164804003 | spa |
dcterms.references | Hung, Y. Y. (1978). Displacement and strain measurement. In R. K. Erf (Ed.), Speckle metrology (pp. 51-71). New York: Academic Press, Inc. | spa |
dcterms.references | Kumar, A., Varshney, R. K., Antony C, S., & Sharma, P. (2003). Transmission characteristics of SMS fiber optic sensor structures. Optics Communications. 219 (1-6): 215-219. http://doi.org/10.1016/S0030-4018(03)01289-6 | spa |
dcterms.references | Li, J., Cai, H., Geng, J., Qu, R., & Fang, Z. (2007). Specklegram in a multiple-mode fiber and its dependence on longitudinal modes of the laser source. Applied Optics. 46 (17): 3572. http://doi.org/10.1364/AO.46.003572 | spa |
dcterms.references | Liu, Y., & Wei, L. (2007). Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers. Applied Optics. 46 (13): 2516-2519. http://doi.org/10.1364/AO.46.002516 | spa |
dcterms.references | Malki, A., Gafsi, R., Michel, L., Labarrère, M., & Lecoy, P. (1996). Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers. Applied Optics. 35 (25): 5198. http://doi.org/10.1364/AO.35.005198 | spa |
dcterms.references | Mase, G. T., & Mase, G. E. (1999). Continuum for Engineers. New York (2 Ed). Boca Raton: CRC Press. | spa |
dcterms.references | R. Jones and C. Wykes. (1989). Holographic and Speckle Interferometry. Cambridge University Press. http://doi.org/10.1017/CBO9780511622465 | spa |
dcterms.references | Rodriguez-Cobo, L., Lomer, M., & Lopez-Higuera, J.-M.(2015). Fiber Specklegram-Multiplexed Sensor. Journal of Lightwave Technology. 33 (12): 2591-2597. http://doi.org/10.1109/JLT.2014.2364318 | spa |
dcterms.references | Saleh, B. E. a, & Teich, M. C. (1991). Fundamentals of Photonics (Vol. 5). New York, USA: John Wiley & Sons, Inc. http://doi.org/10.1002/0471213748 | spa |
dcterms.references | Torres, P., Aristizábal, V. H., & Andrés, M. V. (2011). Modeling of photonic crystal fibers from the scalar wave equation with a purely transverse linearly polarized vector potential. Journal of the Optical Society of America B: Optical Physics. 28 (4). http://doi.org/10.1364/JOSAB.28.000787 | spa |
dcterms.references | Wang, B., Guo, R., Yin, S., & Yu, F. T. S. (2004). Chemical Sensing with Hetero-Core Fiber Specklegram. Journal of Holography and Speckle. 1 (1): 53-57. http://doi.org/10. 1166/jhs.2004.008 | spa |
dcterms.references | Wang, B., Huang, C., Guo, R., & Yu, F. T. S. (2003). A novel fiber chemical sensor using inner-product multimode fiber speckle fields. In F. T. S. Yu, R. Guo, & S. Yin (Eds.), Proceedings of SPIE - The International Society for Optical Engineering (p. 299). http://doi.org/10.1117/12.515977 | spa |
dcterms.references | Wang, Y., Cai, H., Qu, R., Fang, Z., Marin, E., & Meunier, J.-P. (2008). Specklegram in a grapefruit fiber and its response to external mechanical disturbance in a single-multiple-single mode fiber structure. Applied Optics. 47 (20): 3543. http://doi.org/10.1364/AO.47.003543 | spa |
dcterms.references | Wu, S., Yin, S., & Yu, F. T. S. (1991). Sensing with fiber specklegrams. Applied Optics. 30 (31): 4468. http://doi.org/10.1364/AO.30.004468 | spa |
dcterms.references | Yu, F. T. S., Wen, M., Yin, S., & Uang, C.-M. (1993). Submicro-meter displacement sensing using inner-product multimode fiber speckle fields. Applied Optics. 32 (25): 4685. http://doi.org/10.1364/AO.32.004685 | spa |
dcterms.references | Yu, F. T. S., & Yin, S. (2002). Fiber Optic Sensors. New York: Marcel Dekker, Inc. | spa |
dcterms.references | Yu, F. T. S., Yin, S., Zhang, J., & Guo, R. (1994). Application of a fiber-speckle hologram to fiber sensing. Applied Optics. 33 (22): 5202. http://doi.org/10.1364/AO.33.005202 | spa |
dcterms.references | Yu, F. T. S., Zhang, J., Yin, S., & Ruffin, P. B. (1995). Analysis of a fiber specklegram sensor by using coupled-mode theory. Applied Optics. 34 (16): 3018. http://doi.org/10.1364/AO. 34.003018 | spa |
dcterms.references | Zhang, Z., & Ansari, F. (2006). Fiber-optic laser speckle-intensity crack sensor for embedment in concrete. Sensors and Actuators A: Physical. 126 (1): 107-111. http://doi.org/10.1016/j.sna.2005.10.002 | spa |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 8. Specklegramas de fibra óptica analizados mediante procesamiento digital de imágene.pdf
- Tamaño:
- 719.59 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Ciencias Físicas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: