Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1103 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRuiz, Elizabeth-
dc.contributor.authorRamírez, César A.-
dc.contributor.authorNocua, Paola-
dc.contributor.authorRequena, José M.-
dc.contributor.authorPuerta, Concepción J.-
dc.date.accessioned2021-12-09T21:02:05Z-
dc.date.available2021-12-09T21:02:05Z-
dc.date.issued2018-12-26-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1103-
dc.description.abstractLos tripanosomátidos son parásitos causantes de patologías de reconocido impacto en salud pública como la enfermedad de Chagas, la enfermedad del sueño y la leishmaniasis. Estos microorganismos divergieron tempranamente de la línea evolutiva de los eucariotas y se caracterizan por poseer mecanismos peculiares de regulación génica finamente orquestados, tan eficaces que han asegurado su transmisión al permitirles adaptarse a ambientes inhóspitos y dispares como los de sus huéspedes invertebrados y mamíferos. Como consecuencia de su peculiar organización genómica, los tripanosomátidos han apostado por regular la expresión de sus genes a través de mecanismos posteriores a la transcripción, mediados principalmente por la acción de proteínas de unión a ARN (RNA-binding proteins, RBP), que reconocen su mensajero blanco gracias a la presencia de elementos reguladores en cis y se asocian con el ARN formando complejos ribonucleoprotéicos. De esta manera, las células establecen redes reguladoras en las que una misma RBP puede actuar sobre centenares de ARN mensajeros y el destino de cada uno de estos es dictado por la combinación de RBP con las que interactúa. Si bien mediante herramientas de bioinformática se han predicho cerca de un centenar de proteínas con capacidad de unión al ARN en tripanosomátidos, son pocas las que se han caracterizado y, sin duda, son muchas las que están aún por descubrir. En este artículo, se presentan las estrategias seguidas para la identificación y caracterización de proteínas reguladoras de la expresión génica en tripanosomátidos durante la última década en nuestro grupo de investigación, especialmente de las proteínas RBP directamente implicadas en la regulación posterior a la transcripción de los genes HSP70 de Leishmania braziliensis.spa
dc.description.abstractTrypanosomatids are parasites that cause pathologies with renowned impact on public health such as Chagas disease, the sleeping sickness, and leishmaniasis. These eukaryotes are characterized by having diverged early from their evolutionary path developing regulatory mechanisms that are efficient and finely orchestrated. Mechanisms which have ensured their transmission by allowing their adaptation to inhospitable and disparate environments such as those encountered in their invertebrate and mammal hosts. As a consequence of their peculiar genome organization, trypanosomatids have opted for regulating their gene expression mainly through post-transcriptional mechanisms, which are mediated through the action of RNA-binding proteins (RBP). These proteins recognize trypanosomatids target messengers due to the presence of cis elements and they link to the corresponding RNA forming ribonucleoprotein complexes. Thus, cells establish regulatory networks where a single RBP can act over hundreds of RNA messengers, and the destiny of any given RNA is dictated by the combination of the RBP with which it interacts. Around 100 RNA-binding proteins have been predicted by bioinformatics tools in trypanosomatids, but few of them have been characterized and there is no doubt that many are to be discovered still. In this article, we present the strategies used for the identification and characterization of gene-expression regulatory proteins in trypanosomatids over the past decade in our research group, particularly of RBPs directly implicated in the post-transcriptional regulation of the HSP70 genes of Leishmania braziliensis.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleIdentificación de proteínas reguladoras de la expresión génica en tripanosomátidosspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAgabian, N. (1990). Trans splicing of nuclear pre-mRNAs. Cell. 61(7): 1157-1160. doi: 10.1016/0092-8674(90)90674-4spa
dcterms.referencesÁlvar, J., Vélez, I.D., Bern, C., Herrero, M., Desjeux, P., Cano, J., Jannin, J., den Boer, M. (2012). Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 7 (5): e35671. doi: 10.1371/journal.pone.0035671spa
dcterms.referencesAnantharaman, V., Aravind, L. (2004). Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability. BMC Genomics. 5 (1): 45. doi: 10.1186/1471-2164-5-45spa
dcterms.referencesAraújo, P., Teixeira, S. (2011). Regulatory elements involved in the post-transcriptional control of stage-specific gene expression in Trypanosoma cruzi - A review. Mem Inst Oswaldo Cruz. 106 (3): 257-266. doi: 10.1590/S0074-02762011000300002spa
dcterms.referencesAslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B.P., Carrington, M., Depledge, D.P., Fischer, S., Gajria B., Gao, X., Gardner, M.J., Gingle, A., Grant, G., Harb, O.S., Heiges, M., Hertz-Fowler, C., Houston, R., Innamorato, F., Iodice, J., Kissinger, J.C., Kraemer, E., Li, W., Logan, F.J., Miller, J.A., Mitra, S., Myler, P.J., Nayak, V., Pennington, C., Phan, I., Pinney, D.F., Ramasamy, G., Rogers, M.B., Roos, D.S., Ross, C., Sivam, D., Smith, D.F., Srinivasamoorthy, G., Stoeckert, C.J. Jr., Subramanian, S., Thibodeau, R., Tivey, A., Treatman, C., Velarde, G., Wang, H. (2010). TriTrypDB: A functional genomic resource for the Trypanosomatidae.Nucleic Acids Res. 38 (Database issue): D457-462. doi: 10.1093/nar/gkp851spa
dcterms.referencesBangs, J.D., Crain, P.F., Hashizume, T., McCloskey, J.A., Boothroyd, J.C. (1992). Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides. J Biol Chem.267 (14): 9805-9815. PMID: 1349605spa
dcterms.referencesBañuls, A.L., Hide, M., Prugnolle, F. (2007). Leishmania and the leishmaniases: A parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Adv Parasitol. 64: 1-10. doi:10.1016/S0065308X(06)64001-3spa
dcterms.referencesBaumeister, H. (1997). RNA-protein interactions. Oxford, Reino Unido: IRL Press at Oxford University Press.spa
dcterms.referencesBerriman, M., Ghedin, E., Hertz-Fowler, C., Blandin, G., Renauld, H., Bartholomeu, D.C., Lennard, N.J., Caler, E., Hamlin, N.E., Haas, B., Böhme, U., Hannick, L., Aslett, M.A., Shallom, Marcello, L., Hou, L., Wickstead, B., Alsmark, U.C., Arrowsmith, C., Atkin, R.J., Barron, A.J., Bringaud, F., Brooks, K., Carrington, M., Cherevach, I., Chillingworth, T.J., Churcher, C., Clark, L.N., Corton, C.H., Cronin, A., Davies, R.M., Doggett, J., Djikeng, A., Feldblyum, T., Field, M.C., Fraser, A., Goodhead, I., Hance, Z., Harper, D., Harris, B.R., Hauser, H., Hostetler, J., Ivens, A., Jagels, K., Johnson, D., Johnson, J., Jones, K., Kerhornou, A.X., Koo, H., Larke, N., Landfear, S., Larkin, C., Leech, V., Line A, Lord A, Macleod A, Mooney PJ, Moule S, Martin DM, Morgan G.W., Mungall, K., Norbertczak, H., Ormond, D., Pai, G., Peacock, C.S., Peterson, J., Quail, M.A., Rabbinowitsch, E., Rajandream, M.A., Reitter, C., Salzberg, S.L., Sanders, M., Schobel, S., Sharp, S., Simmonds, M., Simpson, A.J., Tallon, L., Turner, C.M., Tait, A., Tivey, A.R., Van Aken, S., Walker, D., Wanless, D., Wang, S., White, B., White, O., Whitehead, S., Woodward, J., Wortman, J., Adams, M.D., Embley, T.M., Gull, K., Ullu, E., Barry, J.D., Fairlamb, A.H., Opperdoes, F., Barrell, B.G., Donelson, J.E., Hall, N., Fraser, C.M., Melville, S.E., El-Sayed, N.M. (2005). The genome of the African trypanosome Trypanosoma brucei. Science. 309: 416-422. doi: 10.1126/science.1112642spa
dcterms.referencesBuchan, J.R., Parker, R. (2009). Eukaryotic stress granules: The ins and outs of translation. Mol Cell. 36 (6): 932-941. doi: 10.1016/j.molcel.2009.11.020spa
dcterms.referencesCarrion, J., Folgueira, C., Soto, M., Fresno, M., Requena, J.M. (2011). Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: A preliminary evaluation. Parasit Vectors. 4: 150. doi: 10.1186/1756-3305-4-150spa
dcterms.referencesColombia – Instituto Nacional de Salud. (2011). Boletin Epidemiológico semana 40. Instituto Nacional de Salud Colombia. Bogotá, Colombia. Pp.9spa
dcterms.referencesCassola, A., Frasch, A. (2009). An RNA recognition motif mediates the nucleocytoplasmic transport of a TrypanosomeRNA-binding protein J Biol Chem. 284 (50): 35015-35028. doi: 10.1074/jbc.M109.031633spa
dcterms.referencesClayton, C. (2016). Gene expression in kinetoplastids. Curr Opin Microbiol. 32: 46-51. doi: 10.1016/j.mib.2016.04.018spa
dcterms.referencesDavid, M., Gabdank, I., Ben-David, M., Zilka, A., Orr, I., Barash, D., Shapira, M. (2010). Preferential translation of Hsp83 in Leishmania requires a thermosensitive polypyrimidine-rich element in the 3’ UTR and involves scanning of the 5’ UTR. RNA. 16 (2): 364-74. doi: 10.1261/rna.1874710spa
dcterms.referencesDe Gaudenzi, J., Frasch, A., Clayton, C. (2005). RNA-binding domain proteins in Kinetoplastids: a comparative analysis. Eukaryo Cell. 4 (12): 2106-2114. doi: 10.1128/EC.4.12.2106-2114.2005spa
dcterms.referencesDi Noia J.M., D’Orso I., Sánchez D.O, Frasch A.C. (2000).AU-rich elements in the 3’-untranslated region of a new mucin-type gene family of Trypanosoma cruzi confers mRNA instability and modulates translation efficiency. J Biol Chem. 275 (14): 10218-10227. PMID: 9556557spa
dcterms.referencesEl-Sayed, N.M., Myler, P.J., Bartholomeu, D.C., Nilsson, D., Aggarwal, G., Tran, A.N., Ghedin, E., Worthey, E.A., Delcher, A.L., Blandin, G., Westenberger, S.J., Caler, E., Cerqueira, G.C., Branche, C., Haas, B., Anupama, A., Arner, E., Aslund, L., Attipoe, P., Bontempi, E., Bringaud, F., Burton, P., Cadag, E., Campbell, D.A., Carrington, M., Crabtree, J., Darban, H., da Silveira, J.F., de Jong, P., Edwards, K., Englund, P.T., Fazelina, G., Feldblyum, T., Ferella, M., Frasch, A.C., Gull, K., Horn, D., Hou, L., Huang, Y., Kindlund, E., Klingbeil, M., Kluge, S., Koo, H., Lacerda, D., Levin, M.J., Lorenzi, H., Louie, T., Machado, C.R., McCulloch, R., McKenna, A., Mizuno, Y., Mottram, J.C., Nelson, S., Ochaya, S., Osoegawa, K., Pai, G., Parsons, M., Pentony, M., Pettersson, U., Pop, M., Ramírez, J.L., Rinta, J., Robertson, L., Salzberg, S.L., Sanchez, D.O., Seyler, A., Sharma, R., Shetty, J., Simpson, A.J,, Sisk, E., Tammi, M.T., Tarleton, R., Teixeira, S., Van Aken, S., Vogt, C., Ward, P.N., Wickstead, B., Wortman, J., White, O., Fraser, C.M,, Stuart, K.D., Andersson, B. (2005). The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. 309: 409-415. doi: 10.1126/science.1112631spa
dcterms.referencesDecker, C.J., Parker, R. (2012). P-bodies and stress granules: Possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol. 4 (9): a012286. doi: 10.1101/cshperspect.a012286spa
dcterms.referencesFolgueira, C., Carrion, J., Moreno, J., Saugar, J.M., Canavate, C., Requena, J.M. (2008). Effects of the disruption of the HSP70-II gene on the growth, morphology, and virulence of Leishmania infantum promastigotes. Int Microbiol. 11(2): 81-89. PMID: 18645958. En PUBMED no aparece el doi, coloqué el PMIDspa
dcterms.referencesFolgueira, C., Quijada, L., Soto, M., Abanades, D.R., Alonso, C., Requena, J.M. (2005). The translational efficiencies of the two Leishmania infantum HSP70 mRNAs, differing in their 3’-untranslated regions, are affected by shifts in the temperature of growth through different mechanisms. J Biol Chem. 280 (42): 35172-35183. doi: 10.1074/jbc.M505559200spa
dcterms.referencesIvens, A.C., Peacock, C.S., Worthey, E.A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M.A., Adlem, E., Aert, R., Anupama, A., Apostolou, Z., Attipoe, P., Bason, N., Bauser, C., Beck, A., Beverley, S.M., Bianchettin, G., Borzym, K., Bothe, G., Bruschi, C.V., Collins, M., Cadag, E., Ciarloni, L., Clayton, C., Coulson, R.M., Cronin, A., Cruz, A.K., Davies, R.M., De Gaudenzi, J., Dobson, D.E., Duesterhoeft, A., Fazelina, G., Fosker, N., Frasch, A.C., Fraser, A., Fuchs, M., Gabel, C., Goble, A., Goffeau, A., Harris, D., Hertz-Fowler, C., Hilbert, H., Horn, D., Huang, Y., Klages, S., Knights, A., Kube, M., Larke, N., Litvin, L., Lord, A., Louie, T., Marra, M., Masuy, D., Matthews, K., Michaeli, S., Mottram, J.C., Müller-Auer, S., Munden, H., Nelson, S., Norbertczak, H., Oliver, K., O'neil, S., Pentony, M., Pohl, T.M,, Price, C., Purnelle, B., Quail, M.A., Rabbinowitsch, E., Reinhardt, R., Rieger, M., Rinta, J., Robben, J., Robertson, L., Ruiz, J.C., Rutter, S., Saunders, D., Schäfer, M., Schein, J., Schwartz, D.C., Seeger, K., Seyler, A., Sharp, S., Shin, H., Sivam, D., Squares, R., Squares, S., Tosato, V., Vogt, C., Volckaert, G., Wambutt, R., Warren, T., Wedler, H., Woodward, J.spa
dcterms.referencesZhou, S., Zimmermann, W., Smith, D.F., Blackwell, J.M., Stuart, K.D., Barrell, B., Myler, P.J. (2005). The genome of the kinetoplastid parasite, Leishmania major. Science. 309: 436-442. doi: 10.1126/science.1112680spa
dcterms.referencesJeffery, C.J. (2018). Protein moonlighting: What is it, and why is it important? Philos Trans R Soc Lond B Biol Sci. 373 (1738). pii: 20160523. doi: 10.1098/rstb.2016.0523spa
dcterms.referencesJustice, M.C., Hsu, M.J., Tse, B., Ku, T., Balkovec, J., Schmatz, D., Nielsen, J. (1998). Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J Biol Chem. 273 (6): 3148-51. doi: 10.1074/JBC.273.6.3148spa
dcterms.referencesKampinga, H.H., Craig, E.A. (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol. 11 (8): 579-592. doi: 10.1038/nrm2941spa
dcterms.referencesKanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., Hirakawi, M. (2006). From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Res. 34: D354-7. doi: 10.1093/nar/gkj102spa
dcterms.referencesKramer, S., Carrington, M. (2011). Trans-acting proteins regulating mRNA maturation, stability and translation in trypanosomatids. Trends Parasitol. 27 (1): 23-30. doi: 10.1016/j.pt.2010.06.011spa
dcterms.referencesKrüger, T., Hofweber, M., Kramer, S. (2013). SCD6 induces ribonucleoprotein granule formation in trypanosomes in a translation-independent manner, regulated by its Lsm and RGG domains. Mol Biol Cell. 24 (13): 2098-2111. doi: 10.1091/mbc.E13-01-0068spa
dcterms.referencesLapointe, C.P., Wilinski, D., Saunders, H.A., Wickens, M.(2015). Protein-RNA networks revealed through covalent RNA marks. Nat Methods. 12 (12): 1163-70. doi: 10.1038/nmeth.3651spa
dcterms.referencesLeBowitz, J.H., Smith, H.Q., Rusche, L., Beverley, S.M. (1993). Coupling of poly(A) site selection and trans-splicing in Leishmania. Genes Dev. 7 (6): 996-1007. doi: 10.1101/gad.7.6.996spa
dcterms.referencesMakeyev, A.V., Liebhaber, S.A. (2002). The poly(C)-binding proteins: A multiplicity of functions and a search for mechanisms. RNA. 8 (3): 265-278. doi: 10+1017+ S1355838202024627spa
dcterms.referencesMaris, C., Domínguez, C., Allain, F.H. (2005). The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 272 (9): 2118-2131. doi: 10.1111/j.1742-4658.2005.04653.xspa
dcterms.referencesMateyak, M.K., Kinzy, T.G. (2010). eEF1A: Thinking outside the ribosome. J Biol Chem. 285 (28): 21209-2113. doi: 10.1074/jbc.R110.113795spa
dcterms.referencesMi, H., Dong, Q., Muruganujan, A., Gaudet, P., Lewis, S., Thomas, P.D. (2010). PANTHER version 7: Improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 38: D204-10. doi: 10.1093/nar/gkp1019spa
dcterms.referencesMittal, N., Subramanian, G., Butikofer, P., Madhubala, R.(2013). Unique posttranslational modifications in eukaryotic translation factors and their roles in protozoan parasite viability and pathogenesis. Mol Biochem Parasitol. 187 (1): 21-31. doi: 10.1016/j.molbiopara.2012.11.001spa
dcterms.referencesMüller-McNicoll, M., Neugebauer, K.M. (2013). How cells get the message: Dynamic assembly and function of mRNA-protein complexes. Nat Rev Genet. 14 (4): 275-287. doi: 10.1038/nrg3434spa
dcterms.referencesNoble, C.G., Song, H. (2008). Structural studies of elongation and release factors. Cell Mol Life Sci. 65 (9): 1335-1346. doi: 10.1007/s00018-008-7495-6.spa
dcterms.referencesNocua, P. A. (2017). Estudio de factores proteicos asociados a la regulación de los genes HSP70 en Leishmania braziliensis.Tesis Doctoral, Pontificia Universidad Javeriana. Bogotá, Colombiaspa
dcterms.referencesNocua, P.A., Ramírez, C.A., Barreto, G.E., González, J., Requena, J.M., Puerta, C.J. (2014). Leishmania braziliensis repli-cation protein A subunit 1: Molecular modelling, protein expression and analysis of its affinity for both DNA and RNA. Parasit Vectors. 7: 573. doi: 10.1186/s13071-014-0573-8spa
dcterms.referencesNocua, P.A., Ramírez, C.A., Requena, J.M., Puerta, C.J. (2017). Leishmania braziliensis SCD6 and RBP42 proteins, two factors with RNA binding capacity. Parasit Vectors. 10 (1): 610. doi: 10.1186/s13071-017-2557-yspa
dcterms.referencesParker, R., Sheth, U. (2007). P bodies and the control of mRNA translation and degradation. Mol Cell. 25 (5): 635-646. doi: 10.1016/j.molcel.2007.02.011spa
dcterms.referencesPuerta, C. (2007). Consideraciones taxonómicas, polimorfismo y clasificación. En: C.J. Puerta. Parásito, genoma y biología. Aproximación molecular al estudio de Trypanosoma rangeliy su relación con Trypanosoma cruzi. (59-68). Bogotá, Colombia: Editorial Pontificia Universidad Javeriana.spa
dcterms.referencesQuijada, L., Soto, M., Alonso, C., Requena, J.M. (2000). Identification of a putative regulatory element in the 3’-untranslated region that controls expression of HSP70 in Leishmania infantum. Mol Biochem Parasitol. 110 (1): 79-91. doi: 10.1016/S0166-6851(00)00258-9spa
dcterms.referencesRajyaguru, P., Parker, R. (2012). RGG motif proteins: Modulators of mRNA functional states. Cell Cycle. 11 (14): 2594-2599. doi: 10.4161/cc.20716spa
dcterms.referencesRamírez, C.A. (2012). Caracterización molecular de los genes HSP70, a-tubulina y ND8 de Leishmania braziliensis y detección de factores proteicos asociados a la regulación de los genes HSP70. Tesis Doctoral, Pontificia Universidad Javeriana. Bogotá, Colombiaspa
dcterms.referencesRamírez, C.A., Dea-Ayuela, M.A., Gutiérrez-Blázquez, M.D., Bolas-Fernández, F., Requena, J.M., Puerta, C.J. (2013). Identification of proteins interacting with HSP70 mRNAs in Leishmania braziliensis. J Proteomics. 94: 124-137. doi: 10.1016/j.jprot.2013.09.008spa
dcterms.referencesRamírez, C.A., Requena, J.M., Puerta, C.J. (2011). Identification of the HSP70-II gene in Leishmania braziliensis HSP70 locus: Genomic organization and UTRs characterization. Parasit Vectors. 4: 166. doi: 10.1186/1756-3305-4-166spa
dcterms.referencesRequena, J.M. (2011). Lights and shadows on gene organization and regulation of gene expression in Leishmania. Front Biosci. 16: 2069-2085. doi: 10.2741/3840spa
dcterms.referencesRequena, J. M. (2012). The stressful life of pathogenic Leishmaniaspecies. En: J.M. Requena. Stress response in Microbiology. (323-346). Norfolk, Reino Unido: Caiser Academic press. ISBN: 978-1-908230-04-1spa
dcterms.referencesRibbeck, K., Lipowsky, G., Kent, H.M., Stewart, M., Gorlich, D. (1998). NTF2 mediates nuclear import of Ran. EMBO J. 17 (22): 6587-6598. doi: 10.1093/emboj/17.22.6587spa
dcterms.referencesRomaniuk, M.A., Cervini, G., Cassola, A. (2016). Regulation of RNA binding proteins in trypanosomatid protozoan parasites. World J Biol Chem. 7 (1): 146-157. doi: 10.4331/wjbc.v7.i1.146spa
dcterms.referencesTourriere, H., Chebli, K., Zekri, L., Courselaud, B., Blanchard, J.M., Bertrand, E., Tazi, J. (2003). The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol. 160 (6): 823-831. doi: 10.1083/jcb.200212128spa
dcterms.referencesTurner, M., Díaz-Muñoz, M. (2018). RNA-binding proteins control gene expression and cell fate in the immune system. Nat Immunol. 19: 120-129. doi: 10.1038/s41590-017-0028-4spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.671-
dc.subject.proposalRegulación génicaspa
dc.subject.proposalGene regulationeng
dc.subject.proposalProteínas de unión a ARNspa
dc.subject.proposalRNA binding proteineng
dc.subject.proposalTripanosomátidosspa
dc.subject.proposalTrypanosomatidseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume42spa
dc.relation.citationstartpage306spa
dc.relation.citationendpage318spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue165spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
1. Identificación de proteínas reguladoras de la expresión génica.pdfCiencias Biomédicas627 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons