Please use this identifier to cite or link to this item: Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMesa Sánchez, Oscar J.-
dc.description.abstractSe revisan cuatro modelos cuantitativos de redes de drenaje. La característica principal de la redes es la autosemejanza. Pero las redes no son determinísticas y es necesario tener en cuenta la variabilidad. El primer modelo es simple, incorpora la variabilidad y es falsificable. Sin embargo, no reproduce las observaciones porque la consideración de la autosemejanza no es explícita. El segundo modelo corrige esta falencia, pero es determinista y no es falsificable. El tercer modelo mantiene la autosemejanza, incorpora la variabilidad, pero no se ha puesto a prueba. El cuarto modelo define un marco teórico más riguroso, aunque su verificación empírica aún está pendiente. Se concluye con un corto análisis de las implicaciones de los modelos para la geometría hidráulica y la semejanza hidroló
dc.description.abstractWe review four quantitative models of drainage networks. The main characteristic of channel networks is selfsimilarity. But networks are not deterministic, there is natural variability that needs to be taken into account. The first model is simple, it takes into account variability and can be tested. Nevertheless, it does not reproduce observations adequately because self-similarity is not explicitly considered in the model construction. The second model does consider self-similarity in the construction but it does not take into account variability and it cannot be tested. The third model considers both self-similarity and variability. The fourth model defines a firmer theoretical basis but it also needs testing against observations. We conclude stressing the need for a thorough test of the model against observations and analysing implications for hydraulic geometry and hydrologyc similarity.eng
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleCuatro modelos de redes de drenajespa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesBarenblatt, G. I. (1996). Scaling, self-similarity, and intermediate asymptotics. Cambridge University Pressspa
dcterms.referencesBarenblatt, G. I. (2003). Cambridge University Pressspa
dcterms.referencesDawdy, D. R. (2007). Prediction versus understanding (the 2006 Ven Te Chow lecture). J Hydrol Eng. 12 (1): 1-3spa
dcterms.referencesDawdy, D. R., Griffis, V. W., Gupta, V. K. (2012). Regional flood-frequency analysis: How we got here and where we are going. J Hydrol Eng. 17 (9): 953-959spa
dcterms.referencesde Vries, H., Becker, T., Eckhardt, B. (1994). Power law distri-bution of discharge in ideal networks. Water Resour Res. 30 (12): 3541-3543spa
dcterms.referencesDodds, P. S. and Rothman, D. H. (1999). Unified view of scaling laws for river networks. Phys Rev. 59 (5): 4865spa
dcterms.referencesEagleson, P. S. (1970). Dynamic Hydrology. McGraw-Hill, New Yorkspa
dcterms.referencesFeller, W. F. (1968). An introduction to probability theory and its applications Vol. 1. Wiley, New York, third
dcterms.referencesFeder, J. (1968). Fractals. Plenum Press, New
dcterms.referencesFurey, P. R., Gupta, V. K., Troutman, B. M. (2013). A top-down model to generate ensembles of runoff from a large number of hillslopes. Nonlinear Process Geophys. 20 (5):
dcterms.referencesGibbings, J. C. (2011). Dimensional analysis.
dcterms.referencesGupta, V. (2016). Scaling theory of floods for developing a physical basis of statistical flood frequency relations. In Oxford Research Encyclopedia of Natural Hazard Science. Oxford University Press. Retrieved 16 Nov2018, from 9780199389407-e-301spa
dcterms.referencesGupta, V. K. &Mesa, O. J. (2014). Horton laws for hydraulic–geometric variables and their scaling exponents in self-similar Tokunaga river networks. Nonlinear Process Geophys. 21 (5):
dcterms.referencesGupta, V. K., Mesa, O. J., Waymire, E. C. (1990). Tree-dependent extreme values: The exponential case. J Appl Probab. 27 (1): 124-133spa
dcterms.referencesGupta, V. K., Troutman, B. M., Dawdy, D. R. (2007). Towards a nonlinear geophysical theory of floods in river networks: an overview of 20 years of progress. In Tsonis, A. A. and Elsner, J. B., editors, Nonlinear Dynamics in Geosciences, p. 121-151. Springer, New York, NY 10013, USAspa
dcterms.referencesGupta, V. K. & Waymire, E. C. (1998). Spatial variability and scale invariance in hydrologic regionalization. In Sposito, G., editor, Scale Dependence and Scale Invariance in Hydrology, p. 88-135. Cambridge University Press, Londonspa
dcterms.referencesHack, J. T. (1957). Studies of longitudinal stream profiles in Vir-ginia and Maryland. USGS Professional Paper.294 (B): 1-97spa
dcterms.referencesHorton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin. 56 (3):
dcterms.referencesKovchegov, Y. & Zaliapin, I. Horton law in self-similar trees. Fractals. 24 (02): 1650017, 2016spa
dcterms.referencesKovchegov, Y. & Zaliapin, I. Tokunaga self-similarity arises naturally from time invariance. Chaos. 28 (4): 041102, 2018spa
dcterms.referencesLa Barbera, P. and Rosso, R. (1989). On the fractal dimension of stream networks. Water Resour Res. 25 (4): 735-741spa
dcterms.referencesLangbein, W. B., et al.(1947). Topographic characteristics of drainage basins. Water Supply Paper 968-C. US Govern-ment Printing Officespa
dcterms.referencesLeopold, L. B. (1994). A View of the River. Harvard University Pressspa
dcterms.referencesLeopold, L. B., Wolman, M. G., Miller, J. P. (1964). Fluvial Pro-cesses in Geomorphology. W. H. Freeman, San
dcterms.referencesMantilla, R. (2007). Physical basis of statistical scaling in peak flows and stream flow hydrographs for topologic and spatially embedded random self-similiarchannel networks. PhD thesis, University of Colorado at Boulderspa
dcterms.referencesMantilla, R. & Gupta, V. K. (2005). A GIS framework to investigate the process basis for scaling statistics on river networks. IEEE Geosci Remote S. 2 (4): 404-408spa
dcterms.referencesMantilla, R., Gupta, V. K., Troutman, B. M. (2012). Extending generalized Horton laws to test embedding algorithms for topologic river networks. Geomorphology. 151-152: 13-26spa
dcterms.referencesMantilla, R., Mesa, O. J., Poveda, G. (2000). Análisis de la ley de Hack en las cuencas hidrográficas de Colombia. Avances en Recursos Hidráulicos. 1 (7): 1-18spa
dcterms.referencesMantilla, R., Troutman, B. M., Gupta, V. K. (2010). Testing statistical self-similarity in the topology of river networks. J Geophys Res. 115: F03038spa
dcterms.referencesMcconnell, M. & Gupta, V. K. (2008). A proof of the Horton law of stream numbers for the Tokunaga model of river networks. Fractals. 16 (03):
dcterms.referencesMesa, O. J. (1986). Analysis of Channel Networks Parameterized by Elevations. PhD thesis, University of Mississippispa
dcterms.referencesMueller, J. E. (1973). Re-evaluation of the relationship of master streams and drainage basins: Reply. Geol Soc Am Bull, 84:3127-3130spa
dcterms.referencesPeckham, S. (1995a). New results of self-similar trees with applications to river networks. Water Resour Res. 31 (4):
dcterms.referencesPeckham, S. (1995b). Self-Similarity in the Three-Dimensional Geometry and Dynamics of Large River Basins. Ph. D. thesis, Univ. of Colo.,
dcterms.referencesPeckham, S. & Gupta, V. K. (1999). A reformulation of Horton’s laws for large river networks in terms of statistical self-similarity. Water Resour Res. 35 (9):
dcterms.referencesRodríguez-Iturbe, I. & Rinaldo, A. (2001). Fractal River Basins: Chance and Self-Organization. Cambridge University Pressspa
dcterms.referencesShreve, R. L. (1966). Statistical law of stream numbers. J Geol. 74: 17-37spa
dcterms.referencesShreve, R. L. (1967). Infinite topologically random channel networks. J Geol. 75: 178-186spa
dcterms.referencesShreve, R. L. (1969). Stream length and basin areas in topologically random channel networks. J Geol. 77: 397-414spa
dcterms.referencesShreve, R. L. (1974). Variation of mainstream length with basin area in river networks. Water Resour Res. 10 (6): 1167-1177spa
dcterms.referencesSivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H., Lakshmi, V., Liang, X., McDonnell, J. J., Mendiondo, E., O’Connell, P. E., et al. (2003). IAHS decade on predictions in ungauged basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences. Hydrolog Sci J. 48 (6): 857-880spa
dcterms.referencesStirling, J. (1730). The differential method: A Treatise of the Summation and Interpolation of Infinite Series. Methodus Differentialis: sive Tractatus de Summatione et Interpolatione Serierum Infinitarum. Gul. Bowyer, London, English translation by Holliday, J., 1749spa
dcterms.referencesStrahler, A. N. (1952). Hypsometric (area-altitude) analysis of ero-sional topography. Geol Soc Am Bull. 63 (11):
dcterms.referencesStrahler, A. N. (1957). Quantitative analysis of watershed geo-morphology. Eos, Transactions American Geophysical Union. 38 (6): 913-920spa
dcterms.referencesTokunaga, E. (1966). The composition of drainage network in Toyohira River basin and valuation of Horton’s first law (in Japanese with English summary). Geophys Bull Hokkaido Univ. 15: 1-19spa
dcterms.referencesTokunaga, E. (1978). Consideration on the composition of drain-age networks and their evolution. Geogr Rep. 13:
dcterms.referencesTroutman, B. M. & Karlinger, M. (1998). Stochastic Methods in Hydrology: Rain, Landforms and Floods, chapter Spatial Channel Network Models in Hydrology, p. 85-128. World Sci., River Edge, N.
dcterms.referencesVeitzer, S. & Gupta, V. K. (2000). Random self-similar river networks and derivations of generalized horton laws in terms of statistical simple scaling. Water Resour Res. 36 (4):
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalRedes de drenajespa
dc.subject.proposalDrainage networkseng
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
8. Cuatro modelos de redes de drenaje.pdfCiencias de la tierra964.4 kBAdobe PDFThumbnail

This item is licensed under a Creative Commons License Creative Commons