Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1111 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMontes, Camilo-
dc.date.accessioned2021-12-09T21:13:32Z-
dc.date.available2021-12-09T21:13:32Z-
dc.date.issued2018-12-26-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1111-
dc.description.abstractEl fenómeno de El Niño en Colombia está marcado por un déficit de precipitaciones precisamente donde se localizan la mayor parte de las hidroeléctricas del país. Si el clima del Plioceno, hace ~2,6 a 5,3 millones de años, es análogo al que podríamos esperar durante este siglo, el déficit en las precipitaciones afectaría la generación hidroeléctrica en Colombia. El respaldo de la generación hídroeléctrica en Colombia es el gas. Las reservas de gas y petróleo en nuestro país están agotándose y nuestra ventana de autoabastecimiento está cercana a su fin. La combinación de estos factores hace que la generación eléctrica colombiana sea muy vulnerable a los fenómenos climáticos que implican déficit en las precipitaciones. El calentamiento global, producto principalmente de la quema de carbón, petróleo y gas, podría llevarnos a una situación en la que, paradójicamente, la única alternativa para que el país tenga independencia y seguridad energética sea el carbón.spa
dc.description.abstractThe El Niño phenomenon in Colombia is characterized by a rainfall deficit precisely where most of the country’s hydroelectric plants are located. Climatic conditions of the Pliocene, ~ 2.6 to 5.3 million years ago, a good analogy for the changing global climate, suggest that rainfall deficits would occur in Colombia, negatively impacting hydroelectric generation. The backup for hydroelectric generation in Colombia is gas. Gas and oil reserves in our country are running out and our self-supply window is nearing its end. The combination of these factors make Colombia’s electricity generation highly vulnerable particularly to climatic conditions where rainfall deficits exist. Global warming caused by the burning of coal, oil and gas, could bring a scenario where, paradoxically, the only alternative for the country to have independence and energy security would be coal.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleLa incertidumbre climática y el dilema energético colombianospa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAdams, J. B., Mann, M. E., Ammann, C. M. 2003. Proxy evidence for an El Niño-like response to volcanic forcing. Nature. 426 (6964): 274spa
dcterms.referencesÁlvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A., et al. 2018. Assessment of methane emissions from the US oil and gas supply chain. Science. 361 (6398): 186-188. doi: 10.1126/science.aar7204spa
dcterms.referencesAsociación Nacional de Empresas Generadoras – ANDEG. 2014. Un análisis del precio de escasez. ANDEG. Bogotá: 28spa
dcterms.referencesAnderson, V. J., Saylor, J. E., Shanahan, T. M., Horton, B. K.2015. Paleoelevation records from lipid biomarkers: Appli-cation to the tropical Andes: GSA Bulletin. 127 (11-12): 1604-1616spa
dcterms.referencesAngarita, H., Wickel, A. J., Sieber, J., Chavarro, J., Maldonado-Ocampo, J. A., Herrera-R, G. A., Delgado, J., Purkey, D.2018. Basin-scale impacts of hydropower development on the Mompós Depression wetlands, Colombia. Hydrology and Earth System Sciences. 22 (5): 2839spa
dcterms.referencesBathiany, S., Dakos, V., Scheffer, M., Lenton, T. M. 2018. Climate models predict increasing temperature variability in poor countries. Science advances. 4 (5): eaar5809. doi: 10.1126/sciadv.aar5809spa
dcterms.referencesBaumert, K. A., Herzog, T., Pershing, J. 2005. Navigating the Numbers, Greenhouse Gas Data and International Climate Policy, U.S.A. World Resources Institute. Washington DC, World Resources Institute: 122spa
dcterms.referencesBayona, G. A., Montes, C., Cardona, A., Jaramillo, C., Ojeda, G., Valencia, V., Ayala-Calvo, R. C. 2011. Intraplate subsidence and basin filling adjacent to an oceanic arc-continent collision: A case from the southern Caribbean-South America plate margin. Basin Research. 23: 403-422spa
dcterms.referencesBedoya-Soto, J. M., Poveda, G., Trenberth, K. E., Vélez-Upegui, J. J. 2018. Interannual hydroclimatic variability and the 2009-2011 extreme ENSO phases in Colombia: From Andean glaciers to Caribbean lowlands. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-018-2452-2:1-14spa
dcterms.referencesBeltrán, E. 1974. Carbones de Colombia. Bogotá, Ministerio de Minas y Petróleos: 254spa
dcterms.referencesBlanco, J. A., Barandica, J. C. N., Viloria, E. A. 2007. ENSO and the rise and fall of a tilapia fishery in northern Colombia. Fisheries Research. 88 (1-3): 100-108spa
dcterms.referencesBove, M. C., O’Brien, J. J., Eisner, J. B., Landsea, C. W., Niu, X. 1998. Effect of El Niño on US landfalling hurricanes, revisited. Bulletin of the American Meteorological Society. 79 (11): 2477-2482.spa
dcterms.referencesCai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L. 2014. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature climate change. 4 (2): 111.spa
dcterms.referencesCai, W., Santoso, A., Wang, G., Yeh, S.-W., An, S.-I., Cobb, K. M., Collins, M., Guilyardi, E., Jin, F.-F., Kug, J.-S., et al. 2015. ENSO and greenhouse warming. Nature Climate Change. 5 (9): 849.spa
dcterms.referencesCardona, A., Montes, C., Ayala, C., Bustamante, C., Hoyos, N., Montenegro, O.,Ojeda, C., Niño, H., Ramírez, V., Valencia, V., Rincón, D., Vervoort, J. D., Zapata, S. 2012. From arc-continent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean-South America plate boundary. Tectonophysics. 580: 58-87.spa
dcterms.referencesCediel, F., Shaw R.P., Cáceres, C. 2003. Tectonic assembly of the northern Andean Block. AAPG Memoir. 79: 815-848spa
dcterms.referencesCobb, K. M., Charles, C. D., Cheng, H., Edwards, R. L. 2003. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature. 424 (6946): 271spa
dcterms.referencesColciencias. 2017. Boletín estadístico No 5: Departamento Admi-nistrativo de Ciencia, Tecnología e Innovaciónspa
dcterms.referencesCollins, M., An, S.-I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F.-F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A. 2010. The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geoscience. 3 (6): 391spa
dcterms.referencesDai, A. & Wigley, T. 2000. Global patterns of ENSO‐induced precipitation. Geophysical Research Letters. 27 (9): 1283-1286.spa
dcterms.referencesDonnelly, J. P. & Woodruff, J. D. 2007. Intense hurricane activity over the past 5,000 years controlled by El Niño and the West African monsoon. Nature. 447 (7143): 465.spa
dcterms.referencesEscalona, A. & Mann, P. 2006. An overview of the petroleum system of Maracaibo Basin. AAPG Bulletin. 90 (4): 657-678.spa
dcterms.referencesFriedel, J., Bard, P., Bernard, P., Cara, M., Courtillot, V., Dercourt, J., Jaupart, C., Le Pichon, X., Madariaga, R., Mantagner, J., Pecker, A., Poirier, J., Salencon, J., Schiendele, F., Tapponnier, P. 2011. Interim Report by an ad hoc working party of the Academie des Sciences. Academie des Sciences: 32spa
dcterms.referencesFyfe, J. C., Gillett, N. P., Zwiers, F. W. 2013. Overestimated global warming over the past 20 years. Nature Climate Change. 3 (9): 767.spa
dcterms.referencesGergis, J. L. & Fowler, A. M. 2009. A history of ENSO events since A.D. 1525: Implications for future climate change. Climatic Change. 92: 343-387.spa
dcterms.referencesHelmens, K. & van der Hammen, T. 1994. The Pliocene and Quaternary of the high plain of Bogotá (Colombia): A history of tectonic uplift, basin development and climatic change. Quaternary International. 21: 41-61spa
dcterms.referencesHooghiemstra, H., Wijninga, V., Cleef, A. M. 2006. The paleobotanical record of Colombia: Implications for biogeography and biodiversity. Annals of the Missouri Botanical Garden. 93: 297-324.spa
dcterms.referencesKreft, S., Eckstein, L., Kerestan, C., Hagen, U. 2015. Global Climate Risk Index 2015: Who Suffers Most From Extreme Weather Events? Weather-related Loss Events in 2013 and 1994 to 2013. Germanwatch e.V., Bonn: 32.spa
dcterms.referencesLawrence, K. T., Liu, Z., Herbert, T. D. 2006. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science. 312 (5770): 79-83spa
dcterms.referencesLópez, J. A., Medina, G., Domínguez, E., Uribe, E., Zapata, W., Arango, S., Martínez, J. F., Correa, C. 2013. Estudio para determinar la vulnerabilidad y las opciones de adaptación del sector energético colombiano frente al cambio cli-mático. Unidad de Planeación Minero-Energética - UPME. Bogota: 416.spa
dcterms.referencesMacías, A. M. & Andrade, J. 2014. Estudio de generación eléctrica bajo escenario de cambio climático. Unidad de Planeación Minero-Energética - UPME: Bogota: 106spa
dcterms.referencesMillar, R. J., Fuglestvedt, J. S., Friedlingstein, P., Rogelj, J., Grubb, M. J., Matthews, H. D., Skeie, R. B., Forster, P. M., Frame, D. J., Allen, M. R. 2017. Emission budgets and pathways consistent with limiting warming to 1.5 C. Nature Geoscience. 10: 741-748.spa
dcterms.referencesMolinares, C., Martínez, J., Fiorini, F., Escobar, J., Jaramillo, C. 2012. Paleoenvironmental reconstruction for the lower Pliocene Arroyo Piedras section (Tubará–Colombia): Impli-cations for the Magdalena River–paleodelta’s dynamic. Journal of South American Earth Sciences. 39: 170-183spa
dcterms.referencesMolnar, P. & Cane, M. A. 2002. El Niño’s tropical climate and teleconnections as a blueprint for pre-Ice Age climates. Paleoceanography. 17 (2): 11spa
dcterms.referencesMolnar, P. & Cane M.A. 2007. Early Pliocene (pre-Ice Age) El Niño-like global climate; which El Niño? Geosphere. 3 (5): 337-365spa
dcterms.referencesMoreno-Sánchez, M. & Pardo-Trujillo, A. 2003. Stratigraphical and sedimentological constraints on western Colombia: Implications on the evolution of the Caribbean plate. En: Bartolini, C., Buffler, R., and Blickwede, J., editors. The Circum-Gulf of México and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. 79: 891-924spa
dcterms.referencesMorón, S., Amos, K., Edmonds, D. A., Payenberg, T., Sun, X., Thyer, M. 2017. Avulsion triggering by El Niño–Southern Oscillation and tectonic forcing: The case of the tropical Magdalena River, Colombia. GSA Bulletin. 129 (9-10): 1300-1313spa
dcterms.referencesMüller, R. D., Sdrolias, M., Gaina, C., Roest, W. R. 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems. 9(4): 19spa
dcterms.referencesNormile, D. 2018. Bucking global trends, Japan again embraces coal power. Science.360 (6388): 476-477spa
dcterms.referencesPérez-Ángel, L. C. & Molnar, P. 2017. Sea Surface Temperatures in the Eastern Equatorial Pacific and Surface Temperatures in the Eastern Cordillera of Colombia During El Niño: Implications for Pliocene Conditions. Paleoceanography. 32 (11): 1309-1314spa
dcterms.referencesPhilander, S. G. & Fedorov, A. V. 2003. Role of tropics in changing the response to Milankovich forcing some three million years ago. Paleoceanography. 18 (2): 23spa
dcterms.referencesPoveda, G. 2004. La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 28 (107): 201-222.spa
dcterms.referencesPoveda, G., Jaramillo, A., Gil, M. M., Quiceno, N., Mantilla, R. I. 2001. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water resources research. 37 (8): 2169-2178.spa
dcterms.referencesPoveda, G. & Rojas, W. 1997. Evidencias de la asociación entre brotes epidémicos de malaria en Colombia y el fenómeno El Niño-Oscilación del Sur. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 21 (81): 421-429spa
dcterms.referencesRajaratnam, B., Romano, J., Tsiang, M., Diffenbaugh, N. S.2015. Debunking the climate hiatus. Climatic Change. 133(2): 129-140.spa
dcterms.referencesRavelo, A. C., Dekens, P. S., McCarthy, M. 2006. Evidence for El Niño-like conditions during the Pliocene. Gsa Today. 16 (3): 4spa
dcterms.referencesRein, B., Luckge, A., Reinhardt, L., Sirocko, F., Wolf, A., Dullo, W. C. 2005. El Niño variability off Perú during the last 20,000 years. Paleoceanography. 20 (4): 17.spa
dcterms.referencesRestrepo-López, J. C. & Torregroza, A. C. 2017. Suspended sediment load in northwestern South America (Colombia): A new view on variability and fluxes into the Caribbean Sea. Journal of South American Earth Sciences. 80: 340-352.spa
dcterms.referencesRogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schae, M., Krey, V., Riahi, K. 2015. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Climate Change. 5 (6): 519, 527spa
dcterms.referencesRopelewski, C. F. & Halpert, M. S. 1986. North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Monthly Weather Review. 114 (12): 2352-2362spa
dcterms.referencesSalzmann, U., A. M., Dolan, A. M., Haywood, W. L., Chan, J., Voss, D. J., Hill, A., Abe-Ouchi, B., Otto-Bliesner, F. J., Bragg, M. A., Chandler, C., Contoux, H. J., Dowsett, A., Jost, Y., Kamae, G., Lohmann, D. J., Lunt, S. J., Pickering, M. J., Pound, G., Ramstein, N. A., Rosenbloom, L., Sohl, C., Stepanek, H., Ueda, Z., Zhang, Z. 2013. Challenges in quantifying Pliocene terrestrial warming revealed by data-model discord. Nature Climate Change. 3: 969-974spa
dcterms.referencesSchrag, D. 2009. Coal as a low-carbon fuel? Nature Geoscience. 2 (12): 818spa
dcterms.referencesScotese, C. R. & Golonka, J. 1997. Paleogeographic atlas, PALEOMAP Project, University of Texas at Arlington: 35.spa
dcterms.referencesSpikings, R. A., Cochran, R., Villagómez, D., van der Lelij, R., Vallejo, C., Winker, W., Beate, B. 2015. The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research. 27: 96-139spa
dcterms.referencesTimmermann, A., Oberhuber, J., Bacher, A., Esch, M., Latif, M., Roeckner, E. 1999. Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature. 398 (6729): 694spa
dcterms.referencesTollefson, J. 2017. Trump pulls United States out of Paris climate agreement. Nature News. 546 (7657): 198spa
dcterms.referencesNaciones Unidas. 2015. Convención Marco sobre el Cambio Climático: Conferencia de las Partes, 21er período de sesiones: Naciones Unidas. París: 40.spa
dcterms.referencesUnidad de Planeación Minero-Energética – UPME. 2010. Bole-tín Estadístico de Minas y Energía 1990-2010. Bogota: 248spa
dcterms.referencesUnidad de Planeación Minero-Energética – UPME. 2013. Bole-tín Estadístico de Minas y Energía 2000-2013. Bogotá: 263spa
dcterms.referencesUnidad de Planeación Minero-Energética – UPME. 2015. Plan Energético Nacional Colombia: Ideario Energético 2050. Bogotá:183.spa
dcterms.referencesUnidad de Planeación Minero-Energética – UPME. 2016. Boletín Estadístico de Minas y Energía, 2012-2016: Bogotá: 200spa
dcterms.referencesUribe, E., Cruz, G., Arango, S., Ramírez, C., León, I., Domínguez, E., García, L. C., Reyes, J. M. 2014. Definir estrategias del mapa de ruta para la adaptación del sector energético frente al cambio climático: UPME, Unidad de Planeación Minero Energética.:203spa
dcterms.referencesvan der Hammen, T., Werner, J., van Dommelen, H. 1973. Palynological record of the upheaval of the Northern Andes: A study of the Pliocene and Lower Quaternary of the Colombian Eastern Cordillera and the early evolution of its High-Andean biota. Review of Palaeobotany and Palynology. 16 (1-2): 1-122spa
dcterms.referencesvan Oldenborgh, G. J., Philip, S., Collins, M. 2005. El Niño in a changing climate: A multi-model study. Ocean Science. 1 (2): 81-95spa
dcterms.referencesVillamil, T. 1999. Campanian–Miocene tectonostratigraphy, depo-center evolution and basin development of Colombia and western Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology. 153 (1): 239-275spa
dcterms.referencesVillamil, T. 2003. Regional hydrocarbon systems of Colombia and western Venezuela; their origin, potential, and exploration. AAPG Memoir. 79: 697-734spa
dcterms.referencesWara, M. W. 2005. Permanent El Niño-Like Conditions During the Pliocene Warm Period. Science. 309 (758): 758-761spa
dcterms.referencesWeber, M., Cardona, A., Paniagua, F., Cordani, U., Sepúlveda, L., Wilson, R. 2009. The Cabo de la Vela Mafic-Ultramafic Complex, Northeastern Colombian Caribbean region: A record of multistage evolution of a Late Cretaceous intra-oceanic arc. Geological Society, London, Special Publications. 328 (1): 549-568spa
dcterms.referencesWoodall, J. M. 2011. Physics for Future Presidents. New York, W. W. Norton & Company: 361spa
dcterms.referencesYeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B. P., Jin, F.-F. 2009. El Niño in a changing climate. Nature. 461 (7263): 511spa
dcterms.referencesZachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 292 (5517): 686-693.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.664-
dc.subject.proposalEl Niñospa
dc.subject.proposalEl Niñoeng
dc.subject.proposalOscilación Meridional (ENOM)spa
dc.subject.proposalEl Niño Southern Oscillation (ENSO)eng
dc.subject.proposalElectricidadspa
dc.subject.proposalElectricityeng
dc.subject.proposalCarbónspa
dc.subject.proposalCoaleng
dc.subject.proposalGasspa
dc.subject.proposalGaseng
dc.subject.proposalCambio climáticospa
dc.subject.proposalClimate changeeng
dc.subject.proposalColombiaspa
dc.subject.proposalColombiaeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume42spa
dc.relation.citationstartpage392spa
dc.relation.citationendpage401spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.coverage.countryColombia-
dc.relation.citationissue165spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
9. La incertidumbre climática y el dilema energético colombiano.pdfCiencias de la Tierra379.16 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons