Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1117 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGordillo, Gerardo-
dc.contributor.authorCalderón, Clara-
dc.contributor.authorMoreno, Robinson-
dc.date.accessioned2021-12-09T21:19:28Z-
dc.date.available2021-12-09T21:19:28Z-
dc.date.issued2019-04-09-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1117-
dc.description.abstractSe fabricaron celdas solares con estructura Mo/CZTS/ZnS/ZnO usando como capa absorbente películas de Cu2ZnSnS4 (CZTS) crecidas por evaporación simultánea de sus precursores desde una fuente de evaporación coaxial construida con un diseño avanzado que permitió mejorar significativamente la homogeneidad en la composición química en todo el volumen. Mediante mediciones con difracción de rayos X (XRD) se verificó que bajo condiciones de crecimiento optimizado era posible obtener películas en la sola fase Cu2ZnSnS4; los análisis de perfiles de profundidad con espectroscopía de fotoelectrones de rayos X (XPS) permitieron confirmar que las muestras preparadas desde una fuente coaxial crecieron solamente en la fase CZTS y que su composición química presentaba una mejor homogeneidad en todo el volumen que aquellas depositadas desde tres fuentes de evaporación separadas. Asimismo, se encontró que las celdas solares fabricadas con una capa absorbente CZTS crecidas desde una fuente de evaporación coaxial presentaban eficiencias de conversión significativamente mayores que las celdas fabricadas con capas CZTS preparadas desde fuentes de evaporación separadas. Se obtuvieron eficiencias de conversión de 5,6%, una corriente de cortocircuito de 18,3 mA/cm2 y un voltaje de circuito abierto de 0,52 V.spa
dc.description.abstractSolar cells with Mo/CZTS/ZnS/ZnO structure were fabricated using Cu2ZnSnS4 (CZTS) films as the absorber layer. These films were grown by simultaneous evaporation of its precursors with a coaxial evaporation source whose advanced design allowed to improve significantly the homogeneity of the chemical composition in the entire volume. Through X-ray diffraction (XRD) measurements we were able to verify that under optimized growing conditions, it is possible to get single phase Cu2ZnSnS4 films; through X-ray photoelectron spectroscopy (XPS) depth profile analysis we confirmed that the chemical composition of the samples prepared from a coaxial source had a better homogeneity throughout the volume than the samples deposited from three separated evaporation sources. We also found that the conversion efficiencies of solar cells fabricated using a CZTS absorber layer grown from a coaxial evaporation source was significantly greater than that of cells fabricated using CZTS layers prepared from separate evaporation sources. We obtained conversion efficiencies of 5.6%, short circuit current of 18.3 mA/cm2 and open-circuit voltage of 0.52 V.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleFabrication of solar cells based on Cu2ZnSnS4 films grown with optimized chemical composition homogeneityspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesEnnaoui, A., Lux-Steiner, M., Weber, A. Abou-Ras, D., Kötschau I., Schock, H.W., Schurr, R., Hölzing A., Jost, S., Hock, R. (2009). Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films. 517: 2511-2514.spa
dcterms.referencesFeltrin, A., Freundlich, A. (2008). Material considerations for terawatt level deployment of photovoltaics. Renew Energy. 33: 180-185spa
dcterms.referencesGordillo, G., Ramírez, A. A., Ramírez, E. A. (2016).Development of novel control system to grow ZnO thin films by reactive evaporation. J. Mater. Res. Technol. 5 (3): 219-225.spa
dcterms.referencesKatagiri, H., Jimbo, K., Yamada, S., Kamimura, T., Shwe, M. W., Fukano, T., Ito, T., Motohiro, T. (2008). Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl. Phys. Express. 1: 041201-041202spa
dcterms.referencesKatagiri, H., Sasaguchi, N., Hando, S., Hosino, S., Ohashi, J., Yokota, T. (1997). Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors. Sol. Energy Mater. & Sol. Cells. 49: 407-414.spa
dcterms.referencesKhalate, S. A., Kate, R. S., Deokate, R. J. (2018). A review on energy economics and the recent research and development in energy and the Cu2ZnSnS4 (CZTS) solar cells: A focus towards efficiency. Solar Energy. 169: 616-633.spa
dcterms.referencesLin, X. Z., Kavalakkatt, J., Lux-Steiner, M., Ennaoui, A. (2011). Thin Film Solar Cells Absorber Cu2ZnSnS4 (CZTS) by annealing of Monodisperse Kesterite Nanoparticle precursors, Hamburg, Proc. 26th Europ. Photovolt. Solar Energy Conf. p. 2896spa
dcterms.referencesMialhe, P., Charles, J. P., Khoury, A., Bordure, G. (1986). The diode quality factor of solar cells under illumination. J. Phys. D. 19: 483-492spa
dcterms.referencesPankove, J. I. (1971). Optical processes in semiconductors. New York, USA: Dover Publications, Inc. p. 57spa
dcterms.referencesRepins, I., Beall, C., Vora, N., DeHart, C., Kuciauskas, D., Dippo, P., To, B., Mann, J., Hsu, W. C., Goodrich, A., Noufi, R. (2012). Co-evaporated Cu2ZnSnSe4 films and devices. Sol. Energy Mater. & Sol. Cells. 101: 154-159spa
dcterms.referencesRiha, S.C., Parkinson, B.A., Prieto, A.L. (2009). Solution based synthesis and characterization of Cu2ZnSnS4 nanocrystals, J. Am. Chem. Soc. 131 (34): 12054-12055spa
dcterms.referencesSrinivasan, R., Yogamalar, R., Josephus, R. J., Bose, A.C. (2009). Estimation of lattice strain, stress, energy density and crystallite size of the spherical yttrium oxide nano-particles. Funct. Mater. Lett. 2: 1spa
dcterms.referencesSwanepoel, R. (1983) Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E. 12: 1214-1222spa
dcterms.referencesTanaka, K., Fukui, Y., Moritake, N., Uchiki, H. (2011). Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Sol. Energy Mater. & Sol. Cells. 95: 838-842spa
dcterms.referencesTodorov, T. K., Tang, J., Bag, S., Gunawan, O., Gokmen, T., Zhu, Y., Mitzi, D. B. (2013). Beyond 11% Efficiency: Characteristics of State‐of‐the‐Art Cu2ZnSn(S,Se)4 Solar Cells. Adv. Energy Mater. 3: 34-38spa
dcterms.referencesWang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., Mitzi, D. B. (2013). Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Advanced Energy Materials. 4 (7): 1301465-1301465.spa
dcterms.referencesWilliamson, G. K., Hall, W. H. (1953) X-ray line broadening from filed Aluminium and Wolframium. Acta Metall. 1:22-31spa
dcterms.referencesWinkler, M. T., Wang, W., Hovel, H. J., Gunawan, O., Todorov, T. K., Mitzi, D. B. (2014). Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells. Energy Environ Sci. 7: 1029-1036spa
dcterms.referencesXu, J., Yang, X., Yang, Q. D., Wong, T. L., Lee, C.S. (2012). Cu2ZnSnS4 hierarchical microspheres as an effective counter electrode material for quantum dot sensitized solar cells. J. Phys. Chem. C. 116 (37): 19718-19723.spa
dcterms.referencesYan, C., Sun, K., Liu, F., Huang, J., Zhou, F., Hao, X. (2017) Boost Voc of pure sulfide kesterite solar cell via a double CZTS layer stacks. Sol. Energy Mater. & Sol. Cells. 160: 7-11spa
dcterms.referencesYang, W., Duan, H. S., Bob, B., Zhou, H., Lei, B., Chung, C. H., Li, S. H., Hou, W. W., Yang, Y. (2012). Novel solution processing of high-efficiency Earth-abundant Cu2ZnSn(S,Se)4 solar cells. Adv. Mater. 24 (47): 6323-6329.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.783-
dc.subject.proposalPelículas delgadas de Cu2ZnSnS4;spa
dc.subject.proposalCu2ZnSnS4 thin filmseng
dc.subject.proposalCeldas solaresspa
dc.subject.proposalSolar cellseng
dc.subject.proposalCo evaporaciónspa
dc.subject.proposalCo evaporationeng
dc.subject.proposalXRDspa
dc.subject.proposalXRDeng
dc.subject.proposalAnálisis XPSspa
dc.subject.proposalXPS Análisiseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume43spa
dc.relation.citationstartpage17spa
dc.relation.citationendpage23spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue166spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
3. Fabrication of solar cells based on Cu2ZnSnS4.pdfCiencias físicas817.98 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons