Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1118 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDubeibe, Fredy L.-
dc.contributor.authorMartínez Sicachá, Sandra M.-
dc.contributor.authorGonzález, Guillermo A.-
dc.date.accessioned2021-12-09T21:42:22Z-
dc.date.available2021-12-09T21:42:22Z-
dc.date.issued2019-04-09-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1118-
dc.description.abstractSe estableció analíticamente el campo de velocidad inducido por un vórtice anular de relación de aspecto pequeña (r1/r0 donde r0 es el radio de la línea central del vórtice y r1 el radio de su sección transversal), con el objeto de establecer la velocidad de traslación, Γ/4πr0[log(8r0/r1)−1/4], de un vórtice anular con circulación Γ. El campo inducido fue obtenido por la ley de Biot-Savart mediante el método de expansión multipolar, y la traslación fue determinada por la comparación entre los campos obtenidos y la condición material que se satisface sobre la superficie del vórtice. La formulación presentada resulta alternativa respecto a otros métodos ya utilizados para este propósito; sin embargo su ventaja radica en la posibilidad de implementarlo a estructuras vorticales más complejas. La solución encontrada muestra que la velocidad de traslación clásicamente reportada corresponde a una solución de primer orden en el método de expansión multipolar, orden correspondiente a los efectos que la curvatura del vórtice tiene sobre la distribución de vorticidad en su sección transversal.spa
dc.description.abstractThe velocity field of a vortex ring is established considering a small aspect ratio (r1/r0, where r0 is the radius of the vortex central line and r1 is the radius of cross section),for the purpose of finding the translation velocity, Γ/4πr0[log(8r0/r1) − 1/4], of the ring vortex with circulation Γ. The induced field is calculated through the Biot-Savart law using a multipole expansion; thus the translation velocity is determined by means of the comparison between the derived field and the substantial condition on the vortex surface. The formulation presented in this work is an alternative to the conventional methods in vortex dynamics. However, it offers an advantage related to the study of more complex vortical structures. The achieved results show that the translation velocity corresponds to the first order solution of the multipole expansion; which concerns curvature effects on the vorticity distribution of the cross section.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleOrbital dynamics in realistic galaxy models: NGC 3726, NGC 3877 and NGC 4010spa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesBinney, J. and Tremaine, S. (2011). Galactic dynamics. Princeton university pressspa
dcterms.referencesBountis, T., Manos, T.and Antonopoulos, C. (2012). Complex statistics in Hamiltonian barred galaxy models.Celestial Mechanics and Dynamical Astronomy, 113(1),63-80spa
dcterms.referencesCaranicolas, N. D. (1996). The structure of motion in a 4-component galaxy mass model. Astrophysics and Space Science, 246(1), 15-28.spa
dcterms.referencesCaranicolas, N. D. and Papadopoulos, N. J(2003). Chaotic orbits in a galaxy model with a massive nucleus. Astronomy & Astrophysics, 399 (3), 957-960spa
dcterms.referencesContopoulos, G. (1979). Stochastic behavior in classical and quantum Hamiltonian systems, G. Casatiand J. Ford Eds., p.1-17.spa
dcterms.referencesDehnen, W. (1993). A family of potential-density pairs for spherical galaxies and bulges. Monthly Notices of the Royal Astronomical Society, 265(1), 250-256spa
dcterms.referencesDubeibe, F. L. and Bermudez - Almanza, L. D.(2014).Optimal conditions for the numerical calculation of the largest Lya-punov exponent for systems of ordinary differential equations. International Journal of Modern Physics C, 25 (07), 1450024.spa
dcterms.referencesDubeibe, F. L., Ria˜no-Doncel, A., and Zotos, E. E (2018). Dynamical analysis of bounded and unbounded orbits in a generalized Hénon-Heiles system. Physics Letters A, 382(13), 904-910.spa
dcterms.referencesGonzález, G. A., Plata-Plata, S. M. and Ramos-Caro J. (2010). Finite thin disc models of four galaxies in the Ursa Major cluster: NGC 3877, NGC 3917, NGC 3949 and NGC 4010. Monthly Notices of the Royal Astronomical Society, 404(1), 468- 474.spa
dcterms.referencesGreiner, J. (1987). A new kind of stellar orbit in a galactic potential. Cel. Mech. 40, 171.spa
dcterms.referencesHernquist, L. (1990). An analytical model for spherical galaxies and bulges. The Astrophysical Journal, 356, 359-364.spa
dcterms.referencesJaffe, W. (1983). A simple model for the distribution of light in spherical galaxies. Monthly Notices of the Royal Astronomical Society, 202(4), 995-999.spa
dcterms.referencesLees, J. F. and Schwarzschild, M. (1992). The orbital structure of galactic halos. The Astrophysical Journal, 384, 491-501.spa
dcterms.referencesLindblad, P. O. (1960). Stockholm Obs. Ann. 21, No. 3-4spa
dcterms.referencesLong, K., Murali, C. (1992). Analytical potentials for barred galaxies. The Astrophysical Journal, 397, 44-48.spa
dcterms.referencesManabe, S. (1979). Applicability of approximate third integral of motion for stellar orbits in the galaxy. Publications of the Astronomical Society of Japan, 31, 369-394.spa
dcterms.referencesManos, T. and Athanassoula, E. (2011). Regular and chaotic orbits in barred galaxies-I. Applying the SALI/GALI method to explore their distribution in several models. Monthly Notices of the Royal Astronomical Society, 415(1), 629-642.spa
dcterms.referencesManos, T., Bountis, T. and Skokos, C. (2013). Interplay between chaotic and regular motion in a time-dependent barred galaxy model. Journal of Physics A: Mathematical and Theoretical, 46(25), 254017.spa
dcterms.referencesMaoz, D. (2016). Astrophysics in a Nutshell: Second Edition. Princeton university press.spa
dcterms.referencesMartinet, L. and Mayer, F. (1975). Galactic orbits and integrals of motion for stars of old galactic populations. III-Conclusions and applications. Astronomy and Astrophysics, 44, 45-57.spa
dcterms.referencesMiyamoto, M. and Nagai, R. (1975). Three-dimensional models for the distribution of mass in galaxies. Publications of the Astronomical Society of Japan, 27, 533-543.spa
dcterms.referencesSatoh, C. (1980). Dynamical models of axisymmetric galaxies and their applications to the elliptical galaxy NGC4697. Publications of the Astronomical Society of Japan, 32, 41.spa
dcterms.referencesVerheijen, M. A. W. and Sancisi, R. (2001). The Ursa Major cluster of galaxies-IV. HI synthesis observations. Astronomy & Astrophysics, 370(3), 765-867.spa
dcterms.referencesVogt, D. and Letelier, P. S. (2005). On multipolar analytical potentials for galaxies. Publications of the Astronomical Society of Japan, 57(6), 871-875.spa
dcterms.referencesZotos, E. E. (2012). Exploring the nature of orbits in a galactic model with a massive nucleus. New Astronomy, 17(6), 576-588.spa
dcterms.referencesZotos, E. E. and Caranicolas, N. D. (2013). Revealing the influence of dark matter on the nature of motion and the families of orbits in axisymmetric galaxy models. Astronomy & Astrophysics, 560, A110.spa
dcterms.referencesZotos, E. E. (2014). Classifying orbits in galaxy models with a prolate or an oblate dark matter halo component. Astronomy & Astrophysics, 563, A19.spa
dcterms.referencesZotos, E. E., Riaño-Doncel, A., and Dubeibe, F. L. (2018). Basins of convergence of equilibrium points in the generalized Hénon-Heiles system. International Journal of Non-Linear Mechanics, 99, 218-228.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.800-
dc.subject.proposalDinámica estelarspa
dc.subject.proposalStellar dynamicseng
dc.subject.proposalGalaxiasspa
dc.subject.proposalGalaxieseng
dc.subject.proposalCinemática y dinámicaspa
dc.subject.proposalKinematics and dynamicseng
dc.subject.proposalDinámica no lineal y caosspa
dc.subject.proposalNonlinear dynamics and chaoseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume43spa
dc.relation.citationstartpage24spa
dc.relation.citationendpage30spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue166spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
4. Orbital dynamics in realistic galaxy model.pdfCiencias físicas1.15 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons