Please use this identifier to cite or link to this item: Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrieto Novoa, Gina M.-
dc.contributor.authorBorja Goyeneche, Estrella N.-
dc.contributor.authorOlaya Florez, Jhon J.-
dc.description.abstractPelículas delgadas de ZrTiSiNiN fueron depositadas sobre sustratos de vidrio y silicio mediante co-sputtering reactivo con magnetrón usando blancos de Ti5Si2, Zr. En esta investigación se varío el contenido de Ni en los recubrimientos mediante la adición de cubos de Ni ubicados sobre el blanco de Zr. La morfología superficial, la estructura cristalina y el espesor de las películas fueron evaluadas mediante microscopía electrónica de barrido (SEM), difracción de rayos X (XRD) e interferometría respectivamente. La resistividad eléctrica se midió mediante el método de cuatro puntas y sus propiedades ópticas se caracterizaron por espectroscopía ultravioleta / visible (UV/Vis). Con base en los resultados de XRD se observó que el Níquel actúa como refinador de grano al lograr disminuir el tamaño de cristalito de 27 nm hasta 15 nm cuando la concentración de Níquel aumenta de 0 at% a 6,8 at%. Tanto la resistividad eléctrica y el “band gap” óptico de los recubrimientos aumentaron con la disminución del tamaño del cristalito como resultado del aumento de la densidad de límites de grano y del efecto de confinamiento cuá
dc.description.abstractThin films of ZrTiSiNiN have been deposited onto a glass and silicon substrates by reactive magnetron co-sputtering of pure Ti5Si2, Zr alloy targets. In this investigation was located Ni pieces on Zr target in order to change the Ni amount in the films. The surface morphology and crystalline structure of the films were investigated by scanning electronic microscope (SEM), X-ray diffraction (XRD) and interferometry respectively. The electrical resistivity was measured by the four-point probe method and their optical properties were characterized by ultraviolet/visible (UV/Vis) spectroscopy. XRD results showed that nickel works as a grain refiner because the crystallite size is reduced from 27 nm to 15 nm when the Ni concentration increases from 0 to% to 6.8 to%. Both the electrical resistance and the optical “band gap” of the coatings increased with the decrease in crystallite size because of the increase in the density of grain boundaries and the quantum confinement effect.eng
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleEfecto del contenido de Ni en las propiedades ópticas y eléctricas de recubrimientos ZrTiSiNiN depositados por co-sputteringspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAkbari, A., Riviere, J. P., Templier, C., & Le Bourhis, E. (2006). Structural and mechanical properties of IBAD deposited nanocomposite Ti-Ni-N coatings. Surface and Coatings Technology, 200 (22-23 SPEC. ISS.), 6298-6302.
dcterms.referencesAvinash, B. S., Chaturmukha, V. S., Jayanna, H. S., Naveen, C. S., Rajeeva, M. P., Harish, B. M., ... Lamani, A. R.(2016). Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial (p. 20426).
dcterms.referencesBelov, D. S., Blinkov, I. V., & Volkhonskii, A. O. (2014). The effect of Cu and Ni on the nanostructure and properties of arc-PVD coatings based on titanium nitride. Surface and Coatings Technology.260: 186-197.
dcterms.referencesBorja-Goyeneche, E. N., & Olaya-Florez, J. J. (2018). A micro-structural and corrosion resistance study of (Zr, Si, Ti)N-Ni coatings produced through co-sputtering. DYNA. 85 (207): 192-197.
dcterms.referencesChinsakolthanakorn, S., Buranawong, A., Witit-Anun, N., Chaiyakun, S., & Limsuwan, P. (2012). Characterization of nanostructured TiZrN thin films deposited by reactive DC magnetron co-sputtering. Procedia Engineering. 32: 571-576.
dcterms.referencesCrone, W. C. (2008). A Brief Introduction to MEMS and NEMS. In Springer-Verlag (Ed.), Handbook of Experimental Solid Mechanics. Retrieved from
dcterms.referencesEbrahimi, F. (2012). Nanocomposites New Trends and Develop-ments.
dcterms.referencesJain, P., & Arun, P. (2013). Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films.548: 241-246.
dcterms.referencesKaliaraj, G. S., Vishwakarma, V., Ramadoss, A., Ramachandran, D., & Rabel, A. M. (2015). Corrosion, haemocompatibility and bacterial adhesion behavior of TiZrN-coated 316L SS for bioimplants. Bulletin of Materials Science.38(4): 951-955.
dcterms.referencesKirik, G. V., Kozak, C., & Opielak, M. (2012). Protective coatings based on Zr-Ti-Si-N their physical and mechanical properties and phase composition. Przeglad Elektrotechniczny.88 (10 A): 319-321. Retrieved from
dcterms.referencesLee, C. H., Guo, F. G., & Chu, C. C. (2012). The Thickness Dependent of Optical Properties, Resistance, Strain and Morphology of Mo Thin Films for The Back Contact of CIGS Solar Cells. Chinese Journal of Physics.50 (2):
dcterms.referencesLin, Y.-W., Huang, J.-H., & Yu, G.-P. (2010). Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering. Thin Solid Films.518(FEBRUARY 2005): 7308-7311.
dcterms.referencesLin, Y.-W., Lu, C.-W., Yu, G.-P., & Huang, J.-H. (2016). Structure and Properties of Nanocrystalline (TiZr) x N 1− x Thin Films Deposited by DC Unbalanced Magnetron Sputtering. Journal of Nanomaterials. 2016: 1-12.
dcterms.referencesLind, H., Forsén, R., Alling, B., Ghafoor, N., Tasnádi, F., Johansson, M. P., ... Odén, M. (2011). Improving thermal stability of hard coating films via a concept of multi-component alloying. Applied Physics Letters.99(9): 91903.
dcterms.referencesLindahl, E., Ottosson, M., & Carlsson, J. O. (2018). Doping of metastable Cu3N at different Ni concentrations: Growth, crystallographic sites and resistivity. Thin Solid Films. 647 (June 2017): 1-8.
dcterms.referencesMarom, H., Ritterband, M., & Eizenberg, M. (2006). The contribution of grain boundary scattering versus surface scattering to the resistivity of thin polycrystalline films. Thin Solid Films.510 (1-2): 62-67.
dcterms.referencesMathew, S., Menon, C. S., & Sudarsanakumar, C. (2008). Effect of thickness on the absorption spectra of GaPcCl, SnPcO and AlPcOH thin films. Optoelectronics and Advanced Materials, Rapid Communications.2 (6): 349-352spa
dcterms.referencesMayrhofer, P. H., Mitterer, C., Hultman, L., & Clemens, H. (2006, November 1). Microstructural design of hard coatings. Progress in Materials Science. Pergamon.
dcterms.referencesMusil, J., Zeman, P., & Baroch, P. (2014). Hard Nanocomposite Coatings. Comprehensive Materials Processing (Vol. 4). Elsevier.
dcterms.referencesPanjan, P., Čekada, M., Panjan, M., Kek-Merl, D., Zupanič, F., Čurković, L., & Paskvale, S. (2012). Surface density of growth defects in different PVD hard coatings prepared by sputtering. Vacuum.86 (6): 794-798.
dcterms.referencesPilloud, D., Dehlinger, A. S., Pierson, J. F., Roman, A., & Pichon, L. (2003). Reactively sputtered zirconium nitride coatings: structural, mechanical, optical and electrical characteristics. Surface and Coatings Technology. 174–175: 720-724.
dcterms.referencesPilloud, D., Pierson, J. F., & Pichon, L. (2006). Influence of the silicon concentration on the optical and electrical properties of reactively sputtered Zr-Si-N nanocomposite coatings. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 131 (1–3): 36-39.
dcterms.referencesPogrebnjak, A. D., Shpak, A. P., Beresnev, V. M., Kolesnikov, D. A., Kunitskii, Y. A., Sobol, O. V., ... Grudnitskii, V. V. (2012). Effect of Thermal Annealing in Vacuum and in Air on Nanograin Sizes in Hard and Superhard Coatings Zr–Ti–Si–N. Journal of Nanoscience and Nanotechnology.12 (12): 9213-9219.
dcterms.referencesRamana, C. V., Smith, R. J., & Hussain, O. M. (2003). Grain size effects on the optical characteristics of pulsed-laser deposited vanadium oxide thin films. Physica Status Solidi (A) Applied Research.199 (1): 5-7.
dcterms.referencesSaladukhin, I. A., Abadias, G., Michel, A., Uglov, V. V., Zlotski, S. V., Dub, S. N., & Tolmachova, G. N. (2015). Structure and hardness of quaternary TiZrSiN thin films deposited by reactive magnetron co-sputtering. Thin Solid Films. 581: 25-31.
dcterms.referencesSandu, C. S., Medjani, F., & Sanjinés, R. (2007). OPTICAL AND ELECTRICAL PROPERTIES OF SPUTTERED Zr-Si-N THIN FILMS: FROM SOLID SOLUTION TO NANOCOMPOSITE. Rev.Adv.Mater.Sci (Vol. 15). Retrieved from
dcterms.referencesSangiovanni, D. G. (2013). Transition Metal Nitrides Alloy Design and Surface Transport Properties using Ab- -initio and Classical Computational Methods. Linköping University. Retrieved from
dcterms.referencesSherrer, P. (1918). Estimation of size and internal structural of colloidal particles by mean of Rontgen rays. Gottinger Nachrichten Math. Phys. 2: 98-100spa
dcterms.referencesSingh, M., Goyal, M., & Devlal, K. (2018). Size and shape effects on the band gap of semiconductor compound nanomaterials. Journal of Taibah University for Science.12(4): 470-475.
dcterms.referencesSmith, A. M., & Nie, S. (2010). Semiconductor nanocrystals: structure, properties, and band gap engineering. Accounts of Chemical Research.43 (2): 190-200.
dcterms.referencesSudha, D., Dhanapandian, S., Manoharan, C., & Arunachalam, A. (2016). Structural, morphological and electrical prop-erties of pulsed electrodeposited CdIn 2 Se 4 thin films. Results in Physics. 6: 599-605.
dcterms.referencesTan, S., Zhang, X., Zhen, R., Tian, Z., & Wang, Z. (2015). Effect of Ni content on CrNiN coatings prepared by RF magnetron sputtering. 120: 54-59spa
dcterms.referencesTauc, J. (1974). Amorphous and Liquid Semiconductors. Springer USspa
dcterms.referencesUglov, V. V., Abadias, G., Zlotski, S. V., Saladukhin, I. A., Skuratov, V. A., Leshkevich, S. S., & Petrovich, S. (2015). Thermal stability of nanostructured TiZrSiN thin films subjected to helium ion irradiation. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms.354: 264-268.
dcterms.referencesVemuri, R. S., Bharathi, K. K., Gullapalli, S. K., & Ramana, C. V. (2010). Effect of Structure and Size on the Electrical Properties of Nanocrystalline WO 3 Films. ACS Applied Materials & Interfaces.2(9): 2623-2628.
dcterms.referencesWang, D.-Y., Chang, C.-L., Hsu, C.-H., & Lin, H.-N. (2000). Synthesis of (Ti, Zr)N hard coatings by unbalanced mag-netron sputtering. Surface and Coatings Technology.130(1): 64-68.
dcterms.referencesWang, Y. X., Zhang, S., Lee, J. W., Lew, W. S., & Li, B. (2013). Toughening effect of Ni on nc-CrAlN/a-SiNx hard nanocomposite. Applied Surface Science. 265: 418-423.
dcterms.referencesZhang, S., Sun, D., Fu, Y., Pei, Y. T., & De Hosson, J. T. M. (2005). Ni-toughened nc-TiN/a-SiNx nanocomposite thin films. Surface and Coatings Technology.200 (5-6): 1530-1534.
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalPropiedades ópticasspa
dc.subject.proposalOptical propertieseng
dc.subject.proposalResistividad eléctricaspa
dc.subject.proposalElectrical resistivityeng
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
3. Efecto del contenido de Ni en las propiedades ópticas.pdf894.75 kBAdobe PDFThumbnail

This item is licensed under a Creative Commons License Creative Commons