Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1150 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrieto Novoa, Gina M.-
dc.contributor.authorBorja Goyeneche, Estrella N.-
dc.contributor.authorOlaya Florez, Jhon J.-
dc.date.accessioned2021-12-09T23:13:49Z-
dc.date.available2021-12-09T23:13:49Z-
dc.date.issued2019-09-25-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1150-
dc.description.abstractPelículas delgadas de ZrTiSiNiN fueron depositadas sobre sustratos de vidrio y silicio mediante co-sputtering reactivo con magnetrón usando blancos de Ti5Si2, Zr. En esta investigación se varío el contenido de Ni en los recubrimientos mediante la adición de cubos de Ni ubicados sobre el blanco de Zr. La morfología superficial, la estructura cristalina y el espesor de las películas fueron evaluadas mediante microscopía electrónica de barrido (SEM), difracción de rayos X (XRD) e interferometría respectivamente. La resistividad eléctrica se midió mediante el método de cuatro puntas y sus propiedades ópticas se caracterizaron por espectroscopía ultravioleta / visible (UV/Vis). Con base en los resultados de XRD se observó que el Níquel actúa como refinador de grano al lograr disminuir el tamaño de cristalito de 27 nm hasta 15 nm cuando la concentración de Níquel aumenta de 0 at% a 6,8 at%. Tanto la resistividad eléctrica y el “band gap” óptico de los recubrimientos aumentaron con la disminución del tamaño del cristalito como resultado del aumento de la densidad de límites de grano y del efecto de confinamiento cuántico.spa
dc.description.abstractThin films of ZrTiSiNiN have been deposited onto a glass and silicon substrates by reactive magnetron co-sputtering of pure Ti5Si2, Zr alloy targets. In this investigation was located Ni pieces on Zr target in order to change the Ni amount in the films. The surface morphology and crystalline structure of the films were investigated by scanning electronic microscope (SEM), X-ray diffraction (XRD) and interferometry respectively. The electrical resistivity was measured by the four-point probe method and their optical properties were characterized by ultraviolet/visible (UV/Vis) spectroscopy. XRD results showed that nickel works as a grain refiner because the crystallite size is reduced from 27 nm to 15 nm when the Ni concentration increases from 0 to% to 6.8 to%. Both the electrical resistance and the optical “band gap” of the coatings increased with the decrease in crystallite size because of the increase in the density of grain boundaries and the quantum confinement effect.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleEfecto del contenido de Ni en las propiedades ópticas y eléctricas de recubrimientos ZrTiSiNiN depositados por co-sputteringspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAkbari, A., Riviere, J. P., Templier, C., & Le Bourhis, E. (2006). Structural and mechanical properties of IBAD deposited nanocomposite Ti-Ni-N coatings. Surface and Coatings Technology, 200 (22-23 SPEC. ISS.), 6298-6302. https://doi.org/10.1016/j.surfcoat.2005.11.046spa
dcterms.referencesAvinash, B. S., Chaturmukha, V. S., Jayanna, H. S., Naveen, C. S., Rajeeva, M. P., Harish, B. M., ... Lamani, A. R.(2016). Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial (p. 20426). https://doi.org/10.1063/1.4946477spa
dcterms.referencesBelov, D. S., Blinkov, I. V., & Volkhonskii, A. O. (2014). The effect of Cu and Ni on the nanostructure and properties of arc-PVD coatings based on titanium nitride. Surface and Coatings Technology.260: 186-197. https://doi.org/10.1016/J.SURFCOAT.2014.09.069spa
dcterms.referencesBorja-Goyeneche, E. N., & Olaya-Florez, J. J. (2018). A micro-structural and corrosion resistance study of (Zr, Si, Ti)N-Ni coatings produced through co-sputtering. DYNA. 85 (207): 192-197. https://doi.org/10.15446/dyna.v85n207.73304spa
dcterms.referencesChinsakolthanakorn, S., Buranawong, A., Witit-Anun, N., Chaiyakun, S., & Limsuwan, P. (2012). Characterization of nanostructured TiZrN thin films deposited by reactive DC magnetron co-sputtering. Procedia Engineering. 32: 571-576. https://doi.org/10.1016/j.proeng.2012.01.1310spa
dcterms.referencesCrone, W. C. (2008). A Brief Introduction to MEMS and NEMS. In Springer-Verlag (Ed.), Handbook of Experimental Solid Mechanics. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.3275&rep=rep1&type=pdfspa
dcterms.referencesEbrahimi, F. (2012). Nanocomposites New Trends and Develop-ments. https://doi.org/10.5772/3389spa
dcterms.referencesJain, P., & Arun, P. (2013). Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films.548: 241-246. https://doi.org/10.1016/j.tsf.2013.09.089spa
dcterms.referencesKaliaraj, G. S., Vishwakarma, V., Ramadoss, A., Ramachandran, D., & Rabel, A. M. (2015). Corrosion, haemocompatibility and bacterial adhesion behavior of TiZrN-coated 316L SS for bioimplants. Bulletin of Materials Science.38(4): 951-955. https://doi.org/10.1007/s12034-015-0949-1spa
dcterms.referencesKirik, G. V., Kozak, C., & Opielak, M. (2012). Protective coatings based on Zr-Ti-Si-N their physical and mechanical properties and phase composition. Przeglad Elektrotechniczny.88 (10 A): 319-321. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84867220104&partnerID=tZOtx3y1spa
dcterms.referencesLee, C. H., Guo, F. G., & Chu, C. C. (2012). The Thickness Dependent of Optical Properties, Resistance, Strain and Morphology of Mo Thin Films for The Back Contact of CIGS Solar Cells. Chinese Journal of Physics.50 (2): 311-321.spa
dcterms.referencesLin, Y.-W., Huang, J.-H., & Yu, G.-P. (2010). Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering. Thin Solid Films.518(FEBRUARY 2005): 7308-7311. https://doi.org/10.1016/j.tsf.2010.04.099spa
dcterms.referencesLin, Y.-W., Lu, C.-W., Yu, G.-P., & Huang, J.-H. (2016). Structure and Properties of Nanocrystalline (TiZr) x N 1− x Thin Films Deposited by DC Unbalanced Magnetron Sputtering. Journal of Nanomaterials. 2016: 1-12. https://doi.org/10.1155/2016/2982184spa
dcterms.referencesLind, H., Forsén, R., Alling, B., Ghafoor, N., Tasnádi, F., Johansson, M. P., ... Odén, M. (2011). Improving thermal stability of hard coating films via a concept of multi-component alloying. Applied Physics Letters.99(9): 91903. https://doi.org/10.1063/1.3631672spa
dcterms.referencesLindahl, E., Ottosson, M., & Carlsson, J. O. (2018). Doping of metastable Cu3N at different Ni concentrations: Growth, crystallographic sites and resistivity. Thin Solid Films. 647 (June 2017): 1-8. https://doi.org/10.1016/j.tsf.2017.12.010spa
dcterms.referencesMarom, H., Ritterband, M., & Eizenberg, M. (2006). The contribution of grain boundary scattering versus surface scattering to the resistivity of thin polycrystalline films. Thin Solid Films.510 (1-2): 62-67. https://doi.org/10.1016/j.tsf.2005.12.155spa
dcterms.referencesMathew, S., Menon, C. S., & Sudarsanakumar, C. (2008). Effect of thickness on the absorption spectra of GaPcCl, SnPcO and AlPcOH thin films. Optoelectronics and Advanced Materials, Rapid Communications.2 (6): 349-352spa
dcterms.referencesMayrhofer, P. H., Mitterer, C., Hultman, L., & Clemens, H. (2006, November 1). Microstructural design of hard coatings. Progress in Materials Science. Pergamon. https://doi.org/10.1016/j.pmatsci.2006.02.002spa
dcterms.referencesMusil, J., Zeman, P., & Baroch, P. (2014). Hard Nanocomposite Coatings. Comprehensive Materials Processing (Vol. 4). Elsevier. https://doi.org/10.1016/B978-0-08-096532-1.00416-7spa
dcterms.referencesPanjan, P., Čekada, M., Panjan, M., Kek-Merl, D., Zupanič, F., Čurković, L., & Paskvale, S. (2012). Surface density of growth defects in different PVD hard coatings prepared by sputtering. Vacuum.86 (6): 794-798. https://doi.org/10.1016/j.vacuum.2011.07.013spa
dcterms.referencesPilloud, D., Dehlinger, A. S., Pierson, J. F., Roman, A., & Pichon, L. (2003). Reactively sputtered zirconium nitride coatings: structural, mechanical, optical and electrical characteristics. Surface and Coatings Technology. 174–175: 720-724. https://doi.org/10.1016/S0257-8972spa
dcterms.referencesPilloud, D., Pierson, J. F., & Pichon, L. (2006). Influence of the silicon concentration on the optical and electrical properties of reactively sputtered Zr-Si-N nanocomposite coatings. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 131 (1–3): 36-39. https://doi.org/10.1016/j.mseb.2006.03.017spa
dcterms.referencesPogrebnjak, A. D., Shpak, A. P., Beresnev, V. M., Kolesnikov, D. A., Kunitskii, Y. A., Sobol, O. V., ... Grudnitskii, V. V. (2012). Effect of Thermal Annealing in Vacuum and in Air on Nanograin Sizes in Hard and Superhard Coatings Zr–Ti–Si–N. Journal of Nanoscience and Nanotechnology.12 (12): 9213-9219. https://doi.org/10.1166/jnn.2012.6777spa
dcterms.referencesRamana, C. V., Smith, R. J., & Hussain, O. M. (2003). Grain size effects on the optical characteristics of pulsed-laser deposited vanadium oxide thin films. Physica Status Solidi (A) Applied Research.199 (1): 5-7. https://doi.org/10.1002/pssa.200309009spa
dcterms.referencesSaladukhin, I. A., Abadias, G., Michel, A., Uglov, V. V., Zlotski, S. V., Dub, S. N., & Tolmachova, G. N. (2015). Structure and hardness of quaternary TiZrSiN thin films deposited by reactive magnetron co-sputtering. Thin Solid Films. 581: 25-31. https://doi.org/10.1016/j.tsf.2014.11.020spa
dcterms.referencesSandu, C. S., Medjani, F., & Sanjinés, R. (2007). OPTICAL AND ELECTRICAL PROPERTIES OF SPUTTERED Zr-Si-N THIN FILMS: FROM SOLID SOLUTION TO NANOCOMPOSITE. Rev.Adv.Mater.Sci (Vol. 15). Retrieved from http://phys.mech.nw.ru/e-journals/RAMS/no_31507/sandu.pdfspa
dcterms.referencesSangiovanni, D. G. (2013). Transition Metal Nitrides Alloy Design and Surface Transport Properties using Ab- -initio and Classical Computational Methods. Linköping University. Retrieved from https://liu.diva-portal.org/smash/get/diva2:617410/FULLTEXT01.pdfspa
dcterms.referencesSherrer, P. (1918). Estimation of size and internal structural of colloidal particles by mean of Rontgen rays. Gottinger Nachrichten Math. Phys. 2: 98-100spa
dcterms.referencesSingh, M., Goyal, M., & Devlal, K. (2018). Size and shape effects on the band gap of semiconductor compound nanomaterials. Journal of Taibah University for Science.12(4): 470-475. https://doi.org/10.1080/16583655.2018.1473946spa
dcterms.referencesSmith, A. M., & Nie, S. (2010). Semiconductor nanocrystals: structure, properties, and band gap engineering. Accounts of Chemical Research.43 (2): 190-200. https://doi.org/10.1021/ar9001069spa
dcterms.referencesSudha, D., Dhanapandian, S., Manoharan, C., & Arunachalam, A. (2016). Structural, morphological and electrical prop-erties of pulsed electrodeposited CdIn 2 Se 4 thin films. Results in Physics. 6: 599-605. https://doi.org/10.1016/j.rinp.2016.09.004spa
dcterms.referencesTan, S., Zhang, X., Zhen, R., Tian, Z., & Wang, Z. (2015). Effect of Ni content on CrNiN coatings prepared by RF magnetron sputtering. 120: 54-59spa
dcterms.referencesTauc, J. (1974). Amorphous and Liquid Semiconductors. Springer USspa
dcterms.referencesUglov, V. V., Abadias, G., Zlotski, S. V., Saladukhin, I. A., Skuratov, V. A., Leshkevich, S. S., & Petrovich, S. (2015). Thermal stability of nanostructured TiZrSiN thin films subjected to helium ion irradiation. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms.354: 264-268. https://doi.org/10.1016/j.nimb.2014.12.043spa
dcterms.referencesVemuri, R. S., Bharathi, K. K., Gullapalli, S. K., & Ramana, C. V. (2010). Effect of Structure and Size on the Electrical Properties of Nanocrystalline WO 3 Films. ACS Applied Materials & Interfaces.2(9): 2623-2628. https://doi.org/10.1021/am1004514spa
dcterms.referencesWang, D.-Y., Chang, C.-L., Hsu, C.-H., & Lin, H.-N. (2000). Synthesis of (Ti, Zr)N hard coatings by unbalanced mag-netron sputtering. Surface and Coatings Technology.130(1): 64-68. https://doi.org/10.1016/S0257-8972(00)00675-7spa
dcterms.referencesWang, Y. X., Zhang, S., Lee, J. W., Lew, W. S., & Li, B. (2013). Toughening effect of Ni on nc-CrAlN/a-SiNx hard nanocomposite. Applied Surface Science. 265: 418-423. https://doi.org/10.1016/j.apsusc.2012.11.022spa
dcterms.referencesZhang, S., Sun, D., Fu, Y., Pei, Y. T., & De Hosson, J. T. M. (2005). Ni-toughened nc-TiN/a-SiNx nanocomposite thin films. Surface and Coatings Technology.200 (5-6): 1530-1534. https://doi.org/10.1016/j.surfcoat.2005.08.080spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.840-
dc.subject.proposalZrTiSiNiNspa
dc.subject.proposalZrTiSiNiNeng
dc.subject.proposalPropiedades ópticasspa
dc.subject.proposalOptical propertieseng
dc.subject.proposalResistividad eléctricaspa
dc.subject.proposalElectrical resistivityeng
dc.subject.proposalSputteringspa
dc.subject.proposalSputtering.eng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume43spa
dc.relation.citationstartpage366spa
dc.relation.citationendpage374spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue168spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
3. Efecto del contenido de Ni en las propiedades ópticas.pdf894.75 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons