Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1161 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRojas, Hugo A.-
dc.contributor.authorMartínez, José J.-
dc.contributor.authorBrijaldo, María H.-
dc.contributor.authorPassos, Fabio-
dc.date.accessioned2021-12-09T23:26:11Z-
dc.date.available2021-12-09T23:26:11Z-
dc.date.issued2019-09-25-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1161-
dc.description.abstractSe estudiaron catalizadores de oro (Au) soportados en tres óxidos metálicos diferentes dado que la naturaleza del soporte podría determinar el tipo de sitios activos necesarios para llevar a cabo las reacciones de hidrogenación selectiva de aldehídos α,β-insaturados. La hidrogenación de cinamaldehído se estudió como la reacción de prueba. El cinamaldehído tiene dos posibilidades de adsorción (vertical y planar), así que si existen especies de oro cargadas, pueda verse el efecto de una adsorción preferencial. Los resultados sugieren que la presencia de partículas intermedias (~5,7 nm) y la existencia de sitios de Auδ¯ son necesarias para incrementar la selectividad hacia la reducción del enlace C=O. Esto se observó preferencialmente en el catalizador de Au/SiO2. En el caso de Au/Fe2O3 y Au/TiO2, en los cuales es posible otro tipo de interacciones metal-soporte, la selectividad decreció probablemente como consecuencia de la adsorción del cinamaldehído en forma vertical y planar, ocasionada por la presencia de partículas de Au° de tamaños de ~9,8 nm y ~4,5 nm, respectivamente.spa
dc.description.abstractWe studied gold catalysts supported on three different metallic oxides as the nature of the support could determine the type of active sites needed to carry out the selective hydrogenation reactions of α,β-unsaturated aldehydes. The hydrogenation of cinammaldehyde was studied as reaction test. The cinnamaldehyde has two preferential adsorption possibilities (vertical atop and planar) and, therefore, if there are charged gold species, the preferential adsorption may be detected. The results suggested that the presence of intermediates particles (~5,7 nm) and Auδ¯ sites can be necessary to increase the selectivity towards the reduction of the C=O group. This behavior was preferentially seen on the Au/SiO2 catalyst. In the Au/Fe2O3 and Au/TiO2 catalysts, where other metal-support interactions are possible, the selectivity decreased possibly due to the adsorption modes of cinnamaldehyde in planar and vertical atop geometry, which may be explained by the size of the Au° particles: ~9,8 nm and ~4,5 nm, respectively.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleProducción de alcohol cinamílico a partir de la hidrogenación selectiva de cinamaldehído usando catalizadores de oro soportados en óxidos metálicosspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesBailie, J.E. & Hutchings, G.J. (2001). Promotion by sulfur of Ag/ZnO catalysts for the hydrogenation of but-2-enal. Catal Commun. 2: 291-294spa
dcterms.referencesBoutonnet, M., Logdberg S., Svensson E.E. (2008). Recent developments in the application of nanoparticles prepared from w/o microemulsions in heterogeneous catalysis. Curr. Opin. Colloid Interface Sci. 13: 270-286spa
dcterms.referencesBreen, J., Burch, R., Gómez-López, J., Griffin, K., Hayes, M. (2004). Steric effects in the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol using an Ir/C catalyst. App Catal A. 268: 267-274spa
dcterms.referencesBrijaldo, M.H., Rojas, H., Martínez, J.J., Passos, F. (2015). Effect of support on acetic acid decomposition over palladium catalysts. J Catal. 331: 63-75spa
dcterms.referencesBus, E. & Van Bokhoven, J.A. (2007). Hydrogen chemisorption on supported platinum, gold, and platinum–gold-alloy catalysts. Phys Chem Chem Phys. 9: 2894-2902spa
dcterms.referencesBus, E., Prins, R., Van Bokhoven, J.A. (2007). Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts. Catal Commun. 8: 1397-1402spa
dcterms.referencesCardenas-Lizana, F., Gomez-Quero, S., Perret, N., Keane, M.A. (2011). Gold catalysis at the gas–solid interface: Role of the support in determining activity and selectivity in the hydrogenation of m-dinitrobenzene. Catal Sci Technol. 1:652-661spa
dcterms.referencesChakarova, K., Mihaylov, M.Y., Ivanova, S., Centeno, M.A., Hadjiivanov, K.I. (2011). Well-Defined Negatively Charged Gold Carbonyls on Au/SiO2. J. Phys. Chem. C. 115: 21273-21282spa
dcterms.referencesDelbecq, F. & Sautet, P. (2002). A density functional study of adsorption structures of unsaturated aldehydes on Pt (111): A key factor for hydrogenation selectivity. J. Catal. 211: 398-406spa
dcterms.referencesDurndell, L.J., Parlett, C.M., Hondow, N.S., Isaacs, M.A., Wilson, K., Lee, A.F. (2015). Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation. Sci Rep. 5:9425-9434spa
dcterms.referencesFahlbusch, K.G., Hammerschmidt, F.J., Panten, J., Pickenhagen, W., Schatkowski, D. Flavours and Fragrances: Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Weinheim, 2008.spa
dcterms.referencesGallezot, P & Richard, D. (1998). Selective Hydrogenation of α,β-Unsaturated Aldehydes. Cat Rev-Sci Eng. 40: 81-126spa
dcterms.referencesGengatharan M., Rajaram P., Ramaswamy K., Viswanathan B. (2016). Studies on Ni–M (M = Cu, Ag, Au) bimetallic catalysts for selective hydrogenation of cinnamaldehyde. Catal. Today. 263: 105-111spa
dcterms.referencesIriondo, A., Mendiguren A., Güemez, M.B., Requies, J. Cambra J.F. (2017). 2,5-DMF production through hydrogenation of real and synthetic 5-HMF over transition metal catalysts supported on carriers with different nature. Catal. Today. 279: 286-95.spa
dcterms.referencesJi, X., Niu, X., Li, B., Han, Q., Yuan, F., Zaera, F., Zhu, Y., Fu, H. (2014). Selective hydrogenation of cinnamaldehyde to cinnamal alcohol over platinum/graphene catalysts. Chem Cat Chem. 6: 3246-3253spa
dcterms.referencesKirichenko, O.A., Kapustin, G.I., Nissenbaum, V.D., Tkachenko, O.P., Poluboyarov, V.A., Tarasov, A.L., Kucherov, A.V., Kustov, L.M. (2010). The novel route of preparation of the supported gold catalysts by deposition-precipitation. Stud Surf Sci Catal. 175: 537-540.spa
dcterms.referencesJiang, H.L. & Xu, Q. J. (2011). Recent progress in synergistic catalysis over heterometallic nanoparticles. Mater. Chem. 21: 13705- 13725.spa
dcterms.referencesLenz, J., Campo, B.C., Álvarez, M., Volpe, M.A. (2009). Liquid phase hydrogenation of alpha,beta-unsaturated aldehydes over gold supported on iron oxides. J Catal. 267: 50-56spa
dcterms.referencesLin, W., Cheng H., Li, X., Zhang, C., Zhao, F., Arai, M. (2018). Layered double hydroxide‐like Mg3Al1–xFex materials as supports for Ir catalysts: Promotional effects of Fe doping in selective hydrogenation of cinnamaldehyde. Chinese J Catal. 39: 988-996spa
dcterms.referencesMartínez, J.J., Rojas, H., Castañeda, C., Díaz, G., Gómez-Cortés, A., Arenas-Alatorre, J. (2012). Cinnamaldehyde hydrogenation over Ir/SiO2 and Ir/FeOx/SiO2 catalysts effect of FeOx on the activity and selectivity. Curr Org Chem. 16: 2791-2796spa
dcterms.referencesMilone, C., Crisafulli, C., Ingoglia, R., Schipilliti, L., Galvagno, S. (2007). A comparative study on the selective hydrogena-tion of α,β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts. Catal Today. 122: 341-351spa
dcterms.referencesMilone, C., Ingoglia, R., Pistone, A., Neri, G., Frusteri, F., Galvagno, S. (2004). Selective hydrogenation of α,β-unsaturated ketones to α,β-unsaturated alcohols on gold-supported catalysts. J Catal. 222: 348-356spa
dcterms.referencesMilone, C., Trapani, M. C., Galvagno, S. (2008). Synthesis of cinnamyl ethyl ether in the hydrogenation of cinnamal-dehyde on Au/TiO2 catalysts. Appl Catal A. 337: 163-167spa
dcterms.referencesMohr, C., Hofmeister, H., Radnik, J., Claus, P. (2003) Identification of Active Sites in Gold-Catalyzed Hydro-genation of Acrolein. J. Am. Chem. Soc. 125: 1905-1911spa
dcterms.referencesPan, H., Li, J., Lu, J., Wang, G., Xie, W., Wua, P., Li, X.(2017). Selective hydrogenation of cinnamaldehyde with PtFex/Al2O3@SBA-15 catalyst: Enhancement in activity and selectivity to unsaturated alcohol by Pt-FeOx and Pt-Al2O3@SBA-15 interaction. J. Catal. 354: 24-36spa
dcterms.referencesRadnik, J., Mohr, C., Claus, P. (2003). On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis. Phys Chem Chem Phys. 5: 172-177spa
dcterms.referencesReyes, P., Rojas, H., Fierro, J.L.G. (2003). Effect of Fe/Ir ratio on the surface and catalytic properties in citral hydrogena-tion on Fe-Ir/TiO2 catalysts. J Mol Cat A: Chemical. 203: 203-211spa
dcterms.referencesRojas, H., Díaz, G., Martínez, J.J., Castañeda, C., Gómez-Cortés, A., Arenas-Alatorre, J. (2012). Hydrogenation of α, β-unsaturated carbonyl compounds over Au and Ir supported on SiO2. J Mol Cat A. 363-364: 122-128spa
dcterms.referencesRojas, H., Martínez, J., Mancípe, S., Borda, G., Reyes, P.(2012). Citral hydrogenation over novel niobia and titania supported Au, Ir–Au and Ir catalysts. React Kinet Mech Cat. 106: 445-455spa
dcterms.referencesSun, K.Q., Hong, Y.C., Zhang, G.R., Xu, B.Q. (2011). Synergy between Pt and Au in Pt-on-Au Nanostructures for Chemoselective Hydrogenation Catalysis. ACS Catal. 1: 1336-1346spa
dcterms.referencesVenugopal, A. & Scurrell, M.S. (2004). Low temperature reductive pretreatment of Au/Fe2O3 catalysts, TPR/TPO studies and behaviour in the water-gas shift reaction. App Catal A. 258: 241-249spa
dcterms.referencesVisco, A.M, Neri, F., Donato, A., Milone, C., Galvagno, S.(1999). X-ray photoelectron spectroscopy of Au/Fe2O3catalysts. Phys Chem Chem Phys. 1: 2869-2873.spa
dcterms.referencesWang, X. & Andrews, L. (2003). Gold is noble but gold hydride anions are stable. Angew Chem Int Ed. 115: 5359-5364spa
dcterms.referencesWang, W., Xie, Y., Zhang, S., Liu, X., Haruta, M., Huang, J.(2018). Selective Hydrogenation of Cinnamaldehyde Catalyzed by ZnO-Fe2O3 Mixed Oxide Supported Gold Nanocatalysts. Catalysts. 8: 60-73.spa
dcterms.referencesWu, Q., Zhang C., Zhang, B., Li, X., Ying, Z., Liu, T., Lin, W., Yu, Y., Cheng, H., Zhao., F. (2016). Highly selective Pt/ordered mesoporous TiO2–SiO2 catalysts for hydrogenation of cinnamaldehyde: The promoting role of Ti2+. J Colloid Interface Sci. 463: 75-82spa
dcterms.referencesZanella, R., Louis, C., Giorgio, S., Touroude, R. (2004). Cro-tonaldehyde hydrogenation by gold supported on TiO2: Structure sensitivity and mechanism. J Catal. 223: 328-339spa
dcterms.referencesZaki, M. I., Mekhemer, G. A. H., Fouad, N. E., Rabee, A. I. M. (2014). Structure–acidity correlation of supported tungsten (VI)-oxo-species: FT-IR and TPD studies of adsorbed pyridine and catalytic decomposition of 2-propanol. Appl. Surf. Sci. 308: 380-387spa
dcterms.referencesZhao, J., Jun, N., Xu, J.H., Xu, J.T., Cen, J., Li, X.N. (2014). Ir Promotion of TiO2-supported Au catalysts for selective hydrogenation of cinnamaldehyde. Catal. Commun. 54: 72-76spa
dcterms.referencesZhu, Y., Qian, H.F., Drake, B.A., Jin, R.C. (2010). Atomically precise Au25( SR)18 nanoparticles as catalysts for the selective hydrogenation of αβ-Unsaturated ketones and aldehydes. Angew. Chem. Int. Ed. 122: 1317-1320spa
dcterms.referencesZhou, X., Su, T., Jiang, Y., Qin, Z., Ji, H., Guo, Z. (2016). CuO–Fe2O3–CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis. Chem. Eng. Sci. 153: 10-20.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.852-
dc.subject.proposalAlcohol cinamílicospa
dc.subject.proposalCinnamyl alcoholeng
dc.subject.proposalOrospa
dc.subject.proposalGoldeneng
dc.subject.proposalCinamaldehídospa
dc.subject.proposalCinnamaldehydeeng
dc.subject.proposalHidrogenaciónspa
dc.subject.proposalHydrogenationeng
dc.subject.proposalCatalizadoresspa
dc.subject.proposalCatalystseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume43spa
dc.relation.citationstartpage539spa
dc.relation.citationendpage549spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue168spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
14. Producción de alcohol cinamílico.pdfCiencias Químicas586.79 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons