Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1162 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFuentes Lorenzo, Jorge L.-
dc.date.accessioned2021-12-09T23:26:51Z-
dc.date.available2021-12-09T23:26:51Z-
dc.date.issued2019-09-25-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1162-
dc.description.abstractLa fotoprotección es una estrategia preventiva y terapéutica frente al cáncer y el envejecimiento de la piel. En el presente trabajo se revisan los efectos biológicos adversos de la radiación ultravioleta, los conceptos básicos relevantes de la fotoprotección y los métodos para llevar a cabo su medición. Asimismo, se resumen los resultados obtenidos de la caracterización radiobiológica y genética del modelo experimental (SOS Chromotest) usado para la bioprospección de extractos y moléculas de origen vegetal con potencial en fotoprotección. Además, se presentan datos sobre la eficacia fotoprotectora y las estimaciones del efecto antigenotóxico de aceites esenciales y extractos obtenidos de especies de plantas, así como de los compuestos mayoritarios de los aceites y extractos promisorios analizados en este estudio. Por último, se postulan posibles mecanismos de acción de algunas moléculas relevantes. Los resultados se presentan y discuten destacando su potencial uso para el desarrollo de bloqueadores solares multifuncionales.spa
dc.description.abstractPhotoprotection is a preventive and therapeutic strategy against skin cancer and photoaging. In the present work, we review the adverse biological effects of the ultraviolet radiation, the basic concepts with relevance in photoprotection, and the methods to carry out its measurement. Likewise, we summarized the main results obtained from the radiobiological and genetic characterization of the SOS Chromotest model, which we used for bioprospecting photoprotective activity of plant extracts and molecules. Besides, we showed photoprotective efficacy and/or antigenotoxicity estimates of plant essential oils and extracts, as well as of the major compounds of promissory oils and extracts analyzed in our study. Finally, action mechanisms of the relevant molecules are postulated. These results are presented and discussed considering their potential use to formulate multifunctional sunscreen.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleLas plantas como fuente de compuestos fotoprotectores frente al daño en el ADN producido por la radiación ultravioletaspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAdams DH, Shou Q, Wohlmuth H, Cowin AJ. (2016). Data on keratin expression in human cells cultured with Australian native plant extracts. Data inBrief. 7: 848-867spa
dcterms.referencesAdhami, V.M., Syed, D.N., Khan, N., Afaq. F. (2008). Phyto-chemicals for prevention of solar ultraviolet radiation-induced damages. Photochem. Photobiol. 84: 489-500spa
dcterms.referencesAfaq, F. & Katiyar, S.K. (2011). Polyphenols: Skin Photoprotection and Inhibition of Photocarcinogenesis. Mini Rev. Med. Chem. 11: 1200-1215.spa
dcterms.referencesArad, S., Konnikov, N., Goukassian, D.A., Gilchrest, B.A.(2007). Quantification of inducible SOS-like photoprotect-ive responses in human skin. J. Invest. Dermatol. 127:2629-2636spa
dcterms.referencesArad, S., Zattra, E., Hebert, J., Epstein, EH,, Goukassian, D.A., Gilchrest, B.A. (2008). Topical thymidine dinucleotide treat-ment reduces development of ultraviolet-induced basal cell carcinoma in Ptch-1+/- mice. Am. J. Pathol. 172: 1248-1255spa
dcterms.referencesBendová, H., Akrman, J., Krejčí, A., Kubáč, L., Jírová, D., Kejlová, K., Kolářová, H., Brabec, M., Malý, M. (2007). In vitro approaches to evaluation of Sun Protection Factor. Toxicology in Vitro. 21: 1268-1275.spa
dcterms.referencesBrash, D.E. (2015). UV signature mutations. Photochem. Photo-biol. 91: 15-26spa
dcterms.referencesBrem, R., Guven, M., Karran, P. (2017). Oxidatively-generated damage to DNA and proteins mediated by photosensitized UVA. Free Radic. Biol. Med. 107: 101-109.spa
dcterms.referencesBravo, K., Duque, L,., Ferreres, F., Moreno, D.A., Osorio, E.(2017). Passiflora tarminiana fruits reduce UVB-induced photoaging in human skin fibroblasts. J. Photochem. Photobiol. B 168: 78-88spa
dcterms.referencesBueno-Sánchez, J.G., Martínez-Morales, J.R., Stashenko, E.E., Ribón, W. (2009). Anti-tubercular activity of eleven aromatic and medicinal plants occurring in Colombia. Biomédica. 29: 51-60spa
dcterms.referencesCésarini, J.P. & Demanneville, S. (2000). Toward a genotoxic protection factor. ‎Radiat. Prot. Dosim. 91: 89-91spa
dcterms.referencesChandra-Pal, H., Athar, M., Elmets, C.A., Afaq, F. (2015). Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3K/AKT/NFkB signaling pathways in SKH-1 hairless mice. Photochem. Photobiol. 91: 225-234.spa
dcterms.referencesChen, L., Hu, J.Y., Wang, S.Q. (2012). He role of antioxidants in photoprotection: A critical review. J. Am. Acad. Dermatol. 67: 1013-1024spa
dcterms.referencesChhabra, G., Ndiaye, M.A., García-Peterson, L.M., Ahmad, N. (2017). Melanoma chemoprevention: Current status and future prospects. Photochem. Photobiol. 93: 975-989spa
dcterms.referencesChiang, H.M., Chan, S.Y., Chu, Y., Wen, K.C. (2015). Fisetin ameliorated photodamage by suppressing the mitogen-activated protein kinase/matrix metalloproteinase pathway and nuclear factor-κB pathways. J. Agric. Food Chem. 63:4551-4560spa
dcterms.referencesChua, L.S., Lee, S.Y., Abdullah, N., Sarmini, M.R. (2012). Review on Labisia pumila (Kacip Fatimah): bioactive phytochemicals and skin collagen synthesis promoting herb. Fitoterapia. 83: 1322-1335spa
dcterms.referencesCos, P., Vlietinck, A.J., Vanden-Berghe, D., Maes, L. (2006). Antiinfective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 106: 290-302spa
dcterms.referencesCui, R., Widlund, H.R., Feige, E., Lin, J.Y., Wilensky, D.L., Igras, V.E., D’Orazio, J., Fung, C.Y., Schanbacher, C.F., Granter, S.R., Fisher, D.E. (2007). Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell. 128: 853-864spa
dcterms.referencesDíaz-Durán, L.T., Olivar-Rincón, N., Puerto-Galvis, C.E., Kouznetsov, V., Fuentes, J.L. (2015).Genotoxicity risk assessment of substituted quinolines using the SOS chromotest. Environmental Toxicology. 30: 278-292spa
dcterms.referencesEastmond, D.A., Hartwig, A., Anderson, D., Anwar, W.A., Cimino, M.C., Dobrev, I., Douglas, G.R., Nohmi, T., Phillips, D.H., Vickers, C. (2009). Mutagenicity testing for chemical risk assessment: update of the WHO/IPCS harmonized scheme. Mutagenesis 24: 341-349spa
dcterms.referencesEller, M.S., Yaar, M., Gilchrest, B.A. (1997). Enhancement of DNA repair in human skin cells by thymidine dinucleotides: Evidence for a p53-mediated mammalian SOS response. Proc. Natl. Acad. Sci. USA. 94: 12627-12632spa
dcterms.referencesEller, M.S., Asarch, A., Gilchrest, B.A. (2008). Photoprotection in human skin- A multifaceted SOS response. Photochem. Photobiol. 84: 339-349.spa
dcterms.referencesElmets, C.A., Singh, D., Tubesing, K., Matsui, M., Katiyar, S., Mukhtar, H. (2001). Cutaneous photoprotection from ultraviolet injury by green tea polyphenols. J. Am. Acad. Dermatol. 44: 425-432spa
dcterms.referencesEscobar, P., Leal, S.M., Herrera, L.V., Martínez, J.R., Stashenko, E.E. (2010). Chemical composition and anti-protozoal activities of Colombian Lippia spp essential oils and their major components. Mem. Inst. Oswaldo Cruz. 105: 184-190spa
dcterms.referencesEscobar, P.A., Kemper, R.A., Tarca, J., Nicolette, J., Kenyon, M., Glowienke, S., Sawant, S.G., Christensen, J., Johnson, T.E., McKnight, C., Ward, G., Galloway, S.M., Custer, L., Gocke, E., O’Donovan, M.R., Braun, K., Snyder, R.D., Mahadevan, B. (2013). Bacterial muta-genicity screening in the pharmaceutical industry. Mutat. Res. 752: 99-118spa
dcterms.referencesEstévez-Castro, C.F., Serment-Guerrero, J.H., Fuentes, J.L. 2018.Influence of the uvrA, recJ and recN gene mutations on the nucleoid reorganization in UV-treated Escherichia coli cells. FEMS Microbiology Letters 365: fny110spa
dcterms.referencesEuropean Cosmetic, Toiletry and Perfumery Association (COLIPA). (2011). Method for In Vitro Determination of UVA Protection. In vitro method for the determination of the UVA protection factor and “critical wavelength” values of sunscreen products. Guidelines March 2011.spa
dcterms.referencesFood and Drug Administration. (2011). Department of Health and Human Services. 21 CFR Parts 201 and 310. [Docket No. FDA–1978–N–0018-0698]. Labeling and Effectiveness Testing; Sunscreen Drug Products for Over-the-Counter Human Use. Final Rule. Fed. Regist. 76: 35620-35665spa
dcterms.referencesFuentes, J.L., Vernhe, M., Cuetara, E.B., Sánchez-Lamar, A., Santana, J.L., Llagostera, M. (2006a).Tannins from barks of Pinus caribeae Morelet protect Escherichia coli cells against DNA damage induced by γ-rays. Fitoterapia. 77: 116-120spa
dcterms.referencesFuentes, J.L., Alonso, A., Cuétara, E., Vernhe, M., Álvarez, N., Sánchez-Lamar, A., Llagostera, M. (2006b). Usefulness of SOS Chromotest in the study of medicinal plant as radioprotectors. Int. J. Radiat. Biol. 82: 323-329spa
dcterms.referencesFuentes, J.L., García-Forero, A.,Quintero-Ruiz, N., Prada-Medina, C.A., Rey-Castellanos, N., Franco-Niño, D.A., Contreras-García, D.A.,Córdoba-Campo, Y., Stashenko EE. (2017). The SOS Chromotest applied for screening plant antigenotoxic agents against ultraviolet radiation. Photochem. Photobiol. Sci. 16: 1424-1434spa
dcterms.referencesGanesan, A. & Hanawalt P. (2016). Photobiological origins of the field of genomic maintenance. Photochem. Photobiol. 92: 52-60spa
dcterms.referencesGarcía-Forero, A., Villamizar-Mantilla, D.A., Núñez, L.A., Ocazionez, R.E., Stashenko, E.E., Fuentes, J.L. (2019). Photoprotective and antigenotoxic effects of the flavonoids apigenin, naringenin, and pinocembrin. Photochem. Photobiol. 95: 1010-1018. Doi: 10.1111/php.13085spa
dcterms.referencesGatz, S.A. & Wiesmuller, L. (2006). p53 in recombination and repair. Cell Death Differ. 13: 1003-1016.spa
dcterms.referencesGiampieri, F., Álvarez-Suárez, J.M., Tulipani, S., Gonzàles-Paramàs, A.M., Santos-Buelga, C., Bompadre, S., Quiles, J.L., Mezzetti, B., Battino, M. (2012). Photoprotective potential of strawberry (Fragaria × Ananassa) extract against UV-A irradiation damage on human fibroblasts. J. Agric. Food Chem. 60: 2322-2327spa
dcterms.referencesGoukassian, D.A., Sharov, A., Rhodes, J., Coleman, C., Eller, M.S., Sharova, T., Bhawan, J., Gilchrest, B.A. (2012). Topical application of thymidine dinucleotide to newborn mice reduces and delays development of UV-induced melanomas. J. Invest. Dermatol. 132: 2664-2666spa
dcterms.referencesHerrera-Moreno, A.M., Carranza, C.E., Chacón-Sánchez, M.I.(2013). Establishment of propagation methods for growing promising aromatic plant species of the Lippia (Verbenaceae) and Tagetes (Asteracespa
dcterms.referencesHerrling, T., Jung, K., Chatelain, E., Langenauer, M. (2006). Radical Skin/Sun Protection Factor RSF –Protection against UV-induced Free Radicals in Skin. SÖFW-Journal. 132: 24-30spa
dcterms.referencesHuang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J.A., Prior, R.L. (2002). High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluores-cence reader in 96-well format. J. Agric. Food Chem. 50:4437-4444.spa
dcterms.referencesHuisman, O. & D’Ari, R. (1981). An inducible DNA replication-cell division coupling mechanism in Escherichia coli. Nature. 290: 797-799spa
dcterms.referencesIkehata, H., Higashi, S., Nakamura, S., Daigaku, Y., Furusawa, Y., Kamei, Y., Watanabe, M., Yamamoto, K., Hieda, K., Munakata, N., Ono, T. (2013). Action spectrum analysis of UVR genotoxicity for skin: The border wavelengths between UVA and UVB can bring serious mutation loads to skin. J. Invest. Dermat. 133: 1850-1856spa
dcterms.referencesJansen, R., Osterwalder, U., Wang, S.Q., Burnett, M., Lim, H.W. (2013). Photoprotection: Part II. Sunscreen: development, efficacy, and controversies. J. Am. Acad. Dermatol. 69:867.e1-14spa
dcterms.referencesJarzycka, A., Lewińska, A., Gancarz, R., Wilk, K.A. (2013). Assessment of extracts of Helichrysum arenarium, Crataegus monogyna, Sambucus nigra in photoprotective UVA and UVB; photostability in cosmetic emulsions. J. Photochem. Photobiol. B128: 50-57spa
dcterms.referencesJonason, A.S., Kunala, S., Price, G.J., Restifo, R.J., Spinell, H.M., Persing, J.A., Leffell, D.J., Tarone, R.E., Brash, D.E. (1996). Frequent clones of p53-mutated keratinocytes in normal human skin. Proc. Natl. Acad. Sci. USA. 93:14025-14029.spa
dcterms.referencesKada, T. & Shimoi K. (1987). Desmutagens and bio-antimutagens - Their modes of action. BioEssays. 7: 113-116spa
dcterms.referencesKneuttinger, A.C., Kashiwazaki, G., Prill, S., Heil, K., Müller, M., Carell, T. (2014). Formation and direct repair of UV-induced dimeric DNA pyrimidine lesions. Photochem. Photobiol.90: 1-14spa
dcterms.referencesKorać, R.R. & Khambholja, K.M. (2011). Potential of herbs in skin protection from ultraviolet radiation. Pharmacognosy Reviews. 5: 164-173spa
dcterms.referencesLinos, E., Swetter, S.M., Cockburn, M.G., Colditz, G.A., Clarke, C.A. (2009). Increasing burden of melanoma in the United States. J. Invest. Dermat. 129: 1666-1674spa
dcterms.referencesLópez, M.A., Stashenko, E.E., Fuentes, J.L. (2011).Chemical composition and antigenotoxic properties of the Lippia alba essential oils. Genet. Mol. Biol. 34: 479-488.spa
dcterms.referencesLund, L.P. & Timmins, G.S. (2007). Melanoma, long wavelength ultraviolet and sunscreens: Controversies and potential resolutions. Pharmacol. Ther. 114: 198-207spa
dcterms.referencesLund, L.P. & Timmins, G.S. (2007). Melanoma, long wavelength ultraviolet and sunscreens: Controversies and potential resolutions. Pharmacol. Ther. 114: 198-207spa
dcterms.referencesMejía‐Giraldo, J.C., Henao‐Zuluaga, K., Gallardo, C., Atehortúa, L., Puertas‐Mejía, M.A. (2016a). Novel in vitro antioxidant and photoprotection capacity of plants from high altitude ecosystems of Colombia. Photochem. Photobiol. 92: 150-157spa
dcterms.referencesMejía‐Giraldo, J.C., Winkler, R., Gallardo, C., Sánchez-Zapata, A.M., Puertas-Mejía, M.A. (2016b). Photoprotective potential of Baccharis antioquensis (Asteraceae) as natural sunscreen. Photochem. Photobiol. 92: 742-752spa
dcterms.referencesMeneses, R., Ocazionez, R.E., Martínez, J.R., Stashenko, E.E.(2009). Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replicationin vitro. Ann. Clin. Microbiol. Antimicrob. 8: 8spa
dcterms.referencesMetral, E., Rachidi, W., Damour, O., Demarne, F., Bechetoille, N. (2018). Long-term genoprotection effect of Sechium edule fruit extract against UVA irradiation in keratinocytes. Photochem. Photobiol. 94: 343-350spa
dcterms.referencesMeza-Joya, F.L., Ramírez-Pinilla, M.P., Fuentes, J.L. (2017). The direct-developing frog Eleutherodactylus johnstonei(Eleutherodactylidae) as biological model for the study of toxic, cytotoxic, and genotoxic effects of agrochemicals. In: Ecotoxicological and Genotoxicological Non-traditional Terrestrial Models, Issues in Toxicology 32, Marcelo L. Larramendy (editors), Chapter 10, Royal Society of Chemistry (RSC) Publishers, Cambridge, United Kingdom, p. 211-227.spa
dcterms.referencesMontes de Oca, M.K., Pearlman, R.L., McClees, S.F., Strickland, R., Afaq, F. (2017). Phytochemicals for the prevention of photocarcinogenesis. Photochem. Photobiol. 93: 956-974spa
dcterms.referencesMukherjee, P.K., Maity, N., Nema, N.K., Sarkar, B.K. (2011). Bioactive compounds from natural resources against skin aging. Phytomedicine. 19: 64-73spa
dcterms.referencesNaranjo-Gómez, E.J., Puertas-Mejía, M.A., Mejía-Giraldo, J.C., Amaya-Nieto, A.Z., Atehortúa, L. (2018). Micro-propagation of Baccharis antioquensis (Asteraceae) and photoinduction of polyphenols by UV radiation. Rev. Biol. Trop. 66: 754-764.spa
dcterms.referencesNarayanan, D.L., Saladi, R.N., Fox, J.L. (2010). Ultraviolet radiation and skin cancer. Int. J. Dermatol. 49: 978-986spa
dcterms.referencesNunes, A.R., Rodrigues, A.L.M., Brito de Queiroz, D., Vieira, I.G.P., Neto, J.F.C., Calixto Junior, J.T., Tintino, S.R., Maia de Morais, S., Coutinho, H.D.M. (2018). Photoprotective potential of medicinal plants from Cerrado biome (Brazil) in relation to phenolic content and anti-oxidant activity. J. Photochem. Photobiol. B 189: 119-123.spa
dcterms.referencesParrish, J., Jaenicke, K.F., Anderson, R.R. (1982). Erythema and melanogenesis action spectra of normal human skin. Photochem. Photobiol. 36: 187-191.spa
dcterms.referencesPereira, B.K., Rosa, R.M., da Silva, J., Guecheva, T.N., de Oliveira, I.M., Ianistcki, M., Benvegnú, V.C., Furtado, G.V., Ferraz, A., Richter, M.F., Schroder, N., Pereira, A.B., Henriques, J.A.P. (2009). Protective effects of three extracts from Antarctic plants against ultraviolet radiation in several biological models. J. Photochem. Photobiol. B 96: 117-129.spa
dcterms.referencesPoon, F., Kang, S., Chien, A.L. (2015). Mechanisms and treat-ments of photoaging, Photodermatol. Photoimmunol. Photomed. 31: 65-74spa
dcterms.referencesPrada-Medina, C.A., Aristizábal-Tessmer, E.T., Quintero-Ruiz, N., Serment-Guerrero, J., Fuentes, J.L. (2016). Survival and SOS response induction in ultraviolet B irradiated Escherichia coli cells with defective repair mechanisms. Int. J. Radiat. Biol. 92: 321-328spa
dcterms.referencesPuertas-Mejía, M.A., Gutiérrez-Villegas, M.A., Mejía-Giraldo, J.C., Winkler, R., Rojano, B. (2018). In vitro UV absorption properties and radical scavenging capacity of Morella parvifolia (Benth.) Parra-Os. extracts. Brazilian Journal of Pharmaceutical Sciences. 54: e17498spa
dcterms.referencesPfuhler, S., Fautz, R., Ouedraogo, G., Latil, A., Kenny, J., Moore, C., Diembeck, W., Hewitt, N.J., Reisinger, K., Barroso, J. (2014). The Cosmetics Europe strategy for animal-free genotoxicity testing: Project status up-date. Toxicology in Vitro. 28: 18-23spa
dcterms.referencesQuillardet, P., Huisman, O., D ́Ari, R., Hofnung, M. (1982). SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proc. Natl. Acad. Sci. USA. 79: 5971-5975spa
dcterms.referencesQuillardet, P. & Hofnung, M. (1984). Induction by UV light of the SOS funtion sfiA in Escherichia coli strains deficient or proficient in excision repair. J. Bacteriol. 157: 35-38.spa
dcterms.referencesQuintero, N., Stashenko, E.E., Fuentes, J.L. (2012). The influence of organic solvents on genotoxicity and antigenotoxicity estimates in the SOS Chromotest. Genet. Mol. Biol. 35: 503-514spa
dcterms.referencesQuintero-Ruiz, N., Córdoba-Campo, Y., Stashenko, E.E., Fuentes, J.L. (2017). Antigenotoxicity effect against ultra-violet radiation-induced DNA damage of the essential oils from Lippia species, Photochem. Photobiol. 93: 1063-1072spa
dcterms.referencesRaman, V., Fuentes, J.L., Stashenko, E.E., Levy, M., Levy, M.M., Camarillo, I.G. (2017). A Lippia origanoidesextract induces cell cycle arrest, apoptosis and suppresses NF-κB signaling in MDA-MB-231 triple-negative breast cancer cells. Int. J. Oncol. 51: 1801-1808spa
dcterms.referencesRaman, V., Aryal, U.K., Hedrick, V., Mohallem-Ferreira, R., Fuentes, J.L., Stashenko, E.E., Levy, M., Levy, M.M., Camarillo, I.G. (2018). Proteomic analysis reveals an extract of the plant Lippia origanoides suppresses mito-chondrial metabolism in triple-negative breast cancer cells. J. Proteome Res. 17: 3370-3383spa
dcterms.referencesReis Mansur, M.C.P.P., Guimarães Leitão, S., Cerqueira-Couthino, C., Vermelho, A.B., Silva, R.S., Presgrave, O.A.F., Leitão, A.A.C., Leitão, G.G., Ricci-Junior, E., Santos, E.P. (2016). In vitro and in vivo evaluation of efficacy and safety of photoprotective formulation containing antioxidant extracts. Rev. Bras. Farmacogn. 26: 251-258spa
dcterms.referencesSaewan, N. & Jimtaisong, A. (2013). Photoprotection of natural flavonoids. J. Appl. Pharm. Sci. 3: 129-141spa
dcterms.referencesSaid, T., Dutot, M., Martin, C., Beaudeux, J.L., Boucher, C., Enee, E., Baudouin, C., Warnet, J.M., Rat, P. (2007). Cytoprotective effect against UV-induced DNA damage and oxidative stress: Role of new biological UV filter. Eur. J. Pharm. Sci. 30: 203-210spa
dcterms.referencesSánchez-Lamar, A., Fonseca, G., Fuentes, J.L., Cozzi, R., Cundari, E., Fiore, M., Ricordy, R., Perticone, P., Degrassi, F., De Salvia, R. (2008). Assessment of the genotoxic risk of Punica granatum L. (Punicaceae) whole fruit extracts. J. Ethnopharmacol. 115: 416-422spa
dcterms.referencesSánchez-Lamar, A., Fuentes, J.L., Fonseca, G., Alonso, A., Cápiro, N., Ferrer, M., Baluja, L., Fiore, M., De Salvia, R., Cozzi, R., Llagostera, M. (2002). Assessment of the potential genotoxic risk of Phyllantus orbicularis HBK aqueous extract using in vitro and in vivo assays. Toxicol. Lett. 136: 87-96spa
dcterms.referencesSantamaría-Acebedo, L., Prada-Medina, C.A., Rondón-González, F., Stashenko, E.E., Martínez-Pérez, F.J., Levy, M., Levy, M.M., Fuentes, J.L. (2018). Interspecific variation and genetic relationships among Colombian Lippia species based on Small Ribosomal Subunit (SRS) gene sequence analysis. J. Herbs Spices Med. Plants. 24: 99-108spa
dcterms.referencesSayre, R.M., Agin, P.P., LeeVee, G.J., Morlowe, E. (1979). A comparison of in vivo and in vitro testing of sunscreens formulas. Photochem. Photobiol. 29: 559-566spa
dcterms.referencesSchärer, O.D. (2013). Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol. 5: a012609spa
dcterms.referencesSchlacher, K. & Goodman MF. (2007). Lessons from 50 years of SOS DNA-damage-induced mutagenesis. Nature Reviews. 8: 587-594spa
dcterms.referencesSchuch, A.P., Moraes, M.C.S., Yagura, T., Menck, C.F.M.(2014). Highly sensitive biological assay for determining the photoprotective efficacy of sunscreen. Environ. Sci. Technol. 48: 11584-11590.spa
dcterms.referencesSchuch, A.P., Moreno, N.C., Schuch, N.J., Menck, C.F.M., GarcÍa, C.C.M. (2017). Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radic. Biol. Med. 107: 110-124spa
dcterms.referencesStashenko, E.E., Ruiz, C., Muñoz, A., Castañeda, M., Martínez, J. (2008). Composition and antioxidant activity of essential oils of Lippia origanoides HBK grown in Colombia. Nat. Prod. Commun. 3: 563-566spa
dcterms.referencesStashenko, E.E., Martínez, J.R., Cala, M.P.,Durán, D.C., Caballero, D. (2013). Chromatographic and mass spectro-metric characterization of essential oils and extracts from Lippia (Verbenaceae) aromatic plants. J. Sep. Sci. 36: 192-202.spa
dcterms.referencesStashenko, E.E. & Martínez, J.R. (2018). The expression of biodiversity in the secondary metabolites of aromatic plants and flowers growing in Colombia. In: Potential of essential oils, Hany A. El-Shemy (Ed.), Chapther 4, Intechopen, pp: 59-86. Doi: 10.5772/intechopen.78001.spa
dcterms.referencesStanfield, J., Osterwalder, U., Herzog, B. (2010). In vitromeasurements of sunscreen protection. Photochem. Photo-biol. Sci. 9: 489-494spa
dcterms.referencesStevanato, R., Bertelle, M., Fabris, S. (2014). Photoprotective characteristics of natural antioxidant polyphenols. Regul. Toxicol. Pharmacol. 69: 71-77spa
dcterms.referencesSundari, J., Selvaraj, R., Rajendra-Prasad, N., Elumalai, R.(2013). Jatropha curcas, leaf and bark fractions protect against ultraviolet radiation-B induced DNA damage in human peripheral blood lymphocytes. Environ. Toxicol. Pharmacol. 36: 875-882spa
dcterms.referencesSykora, P., Witt, K.L., Revanna, P., Smith-Roe, S.L., Dismukes, J., Lloyd, D.G., Engelward, B.P., Sobol, R.W. (2018). Next generation high throughput DNA damage detection platform for genotoxic compound screening. Scientific Reports. 8: 2771spa
dcterms.referencesTewari, A., Sarkany, R.P., Young, A.R. (2012). UVA1 induces cyclobutane pyrimidine dimers but not 6-4 photoproducts in human skin in vivo. J. Invest. Dermatol. 132: 394-400spa
dcterms.referencesUllrich, S.E. (2005). Mechanisms underlying UV-induced immune suppression. Mutat. Res. 571: 185-205spa
dcterms.referencesVaid, M., Sharma, S.D., Katiyar, S.K. (2010). Proanthocyanidins inhibit photocarcinogenesis through enhancement of DNA repair and Xeroderma Pigmentosum group A–dependent mechanism. Cancer Prev. Res. 3: 1621-1619spa
dcterms.referencesVaisman, A. & Woodgate, R. (2017). Translesion DNA poly-merases in eukaryotes: what makes them tick?. Crit. Rev. Biochem. Mol. Biol. 52: 274-303spa
dcterms.referencesValencia, L., García, A., Ramírez, M.P., Fuentes, J.L. (2011). Estimates of DNA damage by the comet assay in the direct-developing frog Eleutherodactylusjohnstonei (Anura: Eleutherodactylidae). Genet. Mol. Biol. 34: 681-688spa
dcterms.referencesVelasco, M.V.R., Sarruf, F.D., Salgado-Santos, I.M.N., Haroutiounian-Filho, C.A., Kaneko, T.M., Baby, A.R. (2008). Broad spectrum bioactive sunscreens. Int. J. Pharm. 363: 50-57spa
dcterms.referencesVernhes, M., González-Pumariega, M., Andrade, L., Schuch, A.P., de Lima-Bessa, K.M., Menck, C.F.M., Sánchez- Lamar, A. (2013). Protective effect of a Phyllanthus orbicularis, aqueous extract against UVB light in human cells. Pharm. Biol. 51: 1-7.spa
dcterms.referencesVicuña, G.C., Stashenko, E.E., Fuentes, J.L. (2010). Chemical composition of the Lippia origanoides essential oils and their antigenotoxicity against bleomycin-induced DNA damage. Fitoterapia. 81: 343-349spa
dcterms.referencesVink, A.A. & Roza, L. (2001). Biological consequences of cyclobutane pyrimidine dimers. J. Photochem. Photobiol. B. 65: 101-104spa
dcterms.referencesWang, S.Q., Xu, H., Stanfield, J.W., Osterwalder, U., Herzog, B. (2017). Comparison of ultraviolet A light protection standards in the Unites States and European Union through in vitro measurements of commercial sunscreens. J. Am. Acad. Dermatol. 77: 42-47spa
dcterms.referencesWhite, P.A. & Rasmussen, J.B. (1996). SOS Chromotest results in a broader context: Empirical relationships between genotoxic potency, mutagenic potency, and carcinogenic potency. Environ. Mol. Mutagen. 27: 270-305spa
dcterms.referencesWhite, P.A., Rasmussen, J.B., Blaise, C. (1996). A semiautomated, microplate version of the SOS Chromotest for the analysis of complex environmental extracts. Mutat. Res. 360: 51-74.spa
dcterms.referencesYamaba, H., Haba, M., Kunita, M., Sakaida, T., Tanaka, H., Yashiro, Y., Nakata, S. (2016). Morphological change of skin fibroblasts induced by UV Irradiation is involved in photoaging. Exp. Dermatol. 25 (Suppl 3): 45-51.spa
dcterms.referencesYamaguchi, L.F., Kato, M.J., Di Mascio, P. (2009). Biflavonoids from Araucaria angustifolia protect against DNA UV induced damage. Phytochemistry. 70: 615-620.spa
dcterms.referencesYeeles, J.T.P., Poli, J., Marians, K.J., Pasero, P. (2013). Rescuing Stalled or Damaged Replication Forks. Cold Spring Harb. Perspect. Biol. 5: a012815.spa
dcterms.referencesYoung, A.R., Chadwick, C.A., Harrison, G.I., Nikaido, O., Ramsden, J., Potteni, C.S. (1998). The similarity of action spectra for thymine dimers in human epidermis and erythema suggests that DNA is the chromophore for erythema. J. Invest. Dermatol. 111: 982-988spa
dcterms.referencesZaidi, M.R., Day, C.P., Merlino, G. (2008). From UVs to metastases: modeling melanoma initiation and progressin in the mouse. J. Invest. Dermat. 128: 2381-2391.spa
dcterms.referencesZeiger, E. (2007). What is needed for an acceptable antimutagenicity manuscript? Mutat. Res. 626: 1-3.spa
dcterms.referencesZhang, W.J. & Björn, L.O. (2009). The effect of ultraviolet radiation on the accumulation of medicinal compounds in plants. Fitoterapia. 80: 207-218spa
dcterms.referencesZiegler, A., Jonason, A.S., Leffell, D.J., Simon, J.A., Sharma, H.W., Kimmelman, J., Remington, L., Jacks, T., Brash, D.E. (1994). Sunburn and p53 in the onset of skin cancer. Nature. 372: 773-776spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.841-
dc.subject.proposalRadiación ultravioletaspa
dc.subject.proposalUltraviolet radiationeng
dc.subject.proposalFotoprotecciónspa
dc.subject.proposalPhotoprotectioneng
dc.subject.proposalAntigenotoxicidadspa
dc.subject.proposalAntigenotoxicityeng
dc.subject.proposalMetabolitos secundarios de plantasspa
dc.subject.proposalPlant secondary metaboliteseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume43spa
dc.relation.citationstartpage550spa
dc.relation.citationendpage562spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue168spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
15. Las plantas como fuente de compuestos fotoprotectore.pdfCiencias de la Tierra550.34 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons