Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1178 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCastillo, Rodrigo-
dc.contributor.authorNieto, Raquel-
dc.contributor.authorGimeno, Luis-
dc.contributor.authorDrumond, Anita-
dc.date.accessioned2021-12-10T00:03:54Z-
dc.date.available2021-12-10T00:03:54Z-
dc.date.issued2019-12-20-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1178-
dc.description.abstractSe estudió la influencia de las oscilaciones atmosféricas interanuales de gran escala en la captación y el transporte de humedad proveniente de las principales fuentes oceánicas con impacto en Mesoamérica utilizando el modelo lagrangiano FLEXPART alimentado con los datos del reanálisis ERA-Interim (1979-2012) para evidenciar cómo los cambios en los sumideros de humedad asociados con cada una de estas fuentes de evaporación reproducen los ya conocidos patrones de variación de los sistemas atmosféricos y de precipitación regional de El Niño-Oscilación del Sur y de la Oscilación Ártica. El hallazgo más importante, que no se había registrado antes para la región de Mesoamérica, es la teleconexión con la Oscilación Antártica, lo que revela una correlación estadística más significativa con el transporte de humedad proveniente del Pacífico durante la estación seca y una un poco más débil durante la estación lluviosa. Estos resultados pueden emplearse como predictores del comportamiento de la distribución de la precipitación, especialmente en el momento de su inicio y en el de su primer máximo.spa
dc.description.abstractThe influence of the interannual large-scale atmospheric oscillations in the uptake and moisture transport from the major oceanic moisture sources with impact over Mesoamerica is investigated herein using a sophisticated Lagrangian approach informed by ERA-Interim reanalysis data (1979-2012), which showed how the moisture sinks changes associated with the evaporation sources reproduce the well-known atmospheric systems variation patterns and the regional precipitation linked to El Niño-Southern Oscillation and the Arctic Oscillation. However, the most important result, not revealed before for the Mesoamerican region, is the Antarctic Oscillation teleconnection, which highlights a stronger statistical correlation with the Pacific moisture transport during the dry season and a little weaker correlation during the rainy season. These results may be used as predictors for the precipitation distribution behavior, mainly during its onset period and for its first maximum.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleInfluencia de los principales modos anulares hemisféricos y El Niño-Oscilación del Sur (ENOS) en las fuentes de humedad globales de Mesoaméricaspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAlfaro, E. J., Chourio, X., Muñoz, Á. G., Mason, S. J. (2018). Improved seasonal prediction skill of rainfall for the Primera season in Central America. International Journal of Climatology. 38: e255-e268. Doi: 10.1002/joc.5366spa
dcterms.referencesAmador, J. A. (2008). The Intra-Americas Sea low-level jet. Annals of the New York Academy of Sciences. 1146 (1): 153-188. Doi: 10.1196/annals.1446.012spa
dcterms.referencesAmador, J. A., Alfaro, E. J., Lizano, O. G., Magaña, V. O.(2006). Atmospheric forcing of the eastern tropical pacific: A review. Progress in Oceanography. 69 (2): 101-142. Doi: 10.1016/j.pocean.2006.03.007spa
dcterms.referencesAmador, J. A., Chacón, R. E., Laporte, S. (2003). Climate and climate variability in the Arenal River basin of Costa Rica. In Climate and Water (pp. 317-349). Springer, Dordrechtspa
dcterms.referencesAmador, J. A., Durán-Quesada, A., Rivera, E., Mora, G., Sáenz, F., Calderón, B., Mora, N. (2016). The easternmost tropical Pacific. Part ii: Seasonal and intraseasonal modes of atmospheric variability. Rev. Biol. Trop. 64 (Supplement 1): S23-S57spa
dcterms.referencesBarker, T., Bashmakov, I., Bernstein, L., Bogner, J., Bosch, P., Dave, R., Davidson, O., Fisher, B., Grubb, M., Gupta, S., et al. (2007). Summary for policymakers. In Climate Change 2007: Mitigation of Climate Change: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Pressspa
dcterms.referencesBengtsson, L., Hagemann, S., Hodges, K. I. (2004). Can climate trends be calculated from reanalysis data? Journal of Geophysical Research: Atmospheres. 109: (D11). Doi: 10.1029/2004JD004536spa
dcterms.referencesBowen, B. M. (1996). Rainfall and climate variation over a sloping New Mexico plateau during the North American monsoon. Journal of Climate. 9 (12): 3432-3442. Doi: 10.1175/1520-0442(1996)009<3432:RACVOA>2.0.CO;2spa
dcterms.referencesBrenner, I. S. (1974). A surge of maritime tropical air-gulf of California to the southwestern United States. Monthly Weather Review. 102 (5): 375-389. Doi: 10.1175/1520-0493(1974)102<0375:ASOMTA>2.0.CO;2spa
dcterms.referencesCastillo, R., Amador, J., Durán-Quesada, A. (2017). Costa Rica rainfall in future climate change scenarios. In AGU Fall Meeting Abstracts.spa
dcterms.referencesCastillo, R., Montero, R., Amador, J., Durán, A. M. (2018). Cambios futuros de precipitación y temperatura sobre América Central y el Caribe utilizando proyecciones climáticas de reducción de escala estadística. Revista de Climatología. 18: 1-12spa
dcterms.referencesCastillo, R., Nieto, R., Drumond, A. (2011). Análisis lagrangiano del comportamiento de los sumideros de humedad debidos a la fuente del Atlántico Norte para las estaciones de invierno y verano durante el periodo 1980-2000. Avances en ciencias de la tierra. 2: 39-51.spa
dcterms.referencesCastillo, R., Nieto, R., Drumond, A., Gimeno, L. (2014b). Estimating the temporal domain when the discount of the net evaporation term affects the resulting net precipitation pattern in the moisture budget using a 3-d Lagrangian approach. PloS One. 9 (6): e99046. Doi: 10.1371/journal.pone.0099046spa
dcterms.referencesCastillo, R., Nieto, R., Drumond, A., Gimeno, L. (2014a). The role of the ENSO cycle in the modulation of moisture trans-port from major oceanic moisture sources. Water Resources Research. 50 (2): 1046-1058. Doi: 10.1002/2013WR013900spa
dcterms.referencesCoen, E. (1973). El floklore costarricense relativo al clima. Revista de la Universidad de Costa Rica. 35: 135-145spa
dcterms.referencesCoumou, D., Di Capua, G., Vavrus, S., Wang, L., Wang, S.(2018). The influence of Arctic amplification on mid-latitude summer circulation. Nature Communications. 9(1): 1-12. Doi: 10.1038/s41467-018-05256-8spa
dcterms.referencesDee, D. P., Uppala, S. M., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, d. P., et al. (2011). The era-interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society. 137 (656): 553-597. Doi: 10.1002/qj.828spa
dcterms.referencesDurán-Quesada, A. M., Castillo, R., Hundsdoerfer, M., Gimeno, L. (2017a). CLLJ and WHWP heat content as a constraint to North American monsoon activation moisture supply. First International Electronic Conference on the Hydrological Cycle, 4856. Doi: 10.3390/CHyCle-2017-04856spa
dcterms.referencesDurán-Quesada, A. M., Gimeno, L., Amador, J. (2017b). Role of moisture transport for Central American precipitation. Earth System Dynamics. 8 (1): 147-161. Doi: 10.5194/esd-8-147-2017spa
dcterms.referencesDurán-Quesada, A. M., Gimeno, L., Amador, J., Nieto, R.(2010). Moisture sources for Central America: Identification of moisture sources using a Lagrangian analysis technique. Journal of Geophysical Research: Atmospheres. 115 (D5). Doi: 10.1029/2009JD012455spa
dcterms.referencesEfron, B. (2003). Second thoughts on the bootstrap. Statistical Science. 18 (2): 135–140. Doi: 10.1214/ss/1063994968spa
dcterms.referencesFogt, R. L. & Bromwich, D. H. (2006). Decadal variability of the ENSO teleconnection to the high-latitude south pacific governed by coupling with the Southern Annular Mode. Journal of Climate. 19 (6): 979-997. Doi: 10.1175/JCLI3671.1spa
dcterms.referencesGillett, N. P., Kell, T D., Jones, P. D. (2006). Regional climate impacts of the Southern Annular Mode. Geophysical Research Letters. 33 (23): Doi: 10.1029/2006GL027721spa
dcterms.referencesGimeno, L., Drumond, A., Nieto, R., Trigo, R. M., Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters. 37 (13): Doi: 10.1029/2010GL043712spa
dcterms.referencesGimeno, L., Nieto, R., Drumond, A., Castillo, R., Trigo, R.(2013). Influence of the intensification of the major oceanic moisture sources on continental precipitation. Geophysical Research Letters. 40 (7): 1443-1450, Doi: 10.1002/grl.50338spa
dcterms.referencesGiorgi, F. & Francisco, R. (2000). Uncertainties in regional climate change prediction: A regional analysis of ensemble simulations with the HadCM2 coupled AOGCM. Climate Dynamics. 16 (2-3): 169-182. Doi: 10.1175/JHM-D-11-088.1spa
dcterms.referencesGochis, D. J., Brito-Castillo, L., Shuttleworth, W. J. (2007). Correlations between sea-surface temperatures and warm season streamflow in Northwest Mexico. International Journal of Climatology. 27 (7): 883-901. Doi: 10.1002/joc.1436spa
dcterms.referencesGong, D. & Wang, S. (1999). Definition of Antarctic oscillation index. Geophysical Research Letters. 26 (4): 459-462. Doi: 10.1029/1999GL900003spa
dcterms.referencesGutzler, D. S. & Preston, J. W. (1997). Evidence for a relationship between spring snow cover in North America and summer rainfall in New Mexico. Geophysical Research Letters. 24(17): 2207-2210. Doi: 10.1029/97GL02099spa
dcterms.referencesHales, J. E. (1972). Surges of maritime tropical air northward over the Gulf of California. Monthly Weather Review. 100 (4): 298-306. Doi: 10.1175/1520-0493(1972)100<0298:SOMTAN>2.3.CO;2spa
dcterms.referencesHanna, S. (1984). Applications in air pollution modeling. In Atmospheric turbulence and air pollution modelling. Springer. p. 275-310spa
dcterms.referencesHidalgo, H. G., Amador, J. A., Alfaro, E. J., Quesada, B.(2013). Hydrological climate change projections for Central America. Journal of Hydrology. 495: 94-112. Doi: 10.1016/j.jhydrol.2013.05.004spa
dcterms.referencesHo, M., Kiem, A., Verdon-Kidd, D. (2012). The Southern Annular Mode: A comparison of indices. Hydrology and Earth System Sciences. 16 (3): 967-982. Doi: 10.5194/hess-16-967-2012spa
dcterms.referencesHuang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., Zhang, H.-M. (2017). Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. Journal of Climate. 30(20): 8179-8205. Doi: 10.1175/JCLI-D-16-0836.1spa
dcterms.referencesHurrell, J. W. (1995). Decadal trends in the North Atlantic Oscil-lation: Regional temperatures and precipitation. Science. 269 (5224): 676-679. Doi: 10.1126/science.269.5224.676spa
dcterms.referencesHurrell, J. W. & Van Loon, H. (1997). Decadal variations in cli-mate associated with the North Atlantic Oscillation. In Climatic change at high elevation sites. Springer, Dordrecht. p. 69-94. Doi: 10.1007/978-94-015-8905-5_4spa
dcterms.referencesKalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society. 77 (3): 437-472. Doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2spa
dcterms.referencesKarnauskas, K. B., Seager, R., Giannini, A., Busalacchi, A. J. (2013). A simple mechanism for the climatological midsummer drought along the pacific coast of Central America. Atmósfera. 26 (2): 261-281. Doi: 10.1016/S0187-6236(13)71075-0spa
dcterms.referencesKidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N., Baldwin, M. P., Gray, L. J. (2015). Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geoscience. 8 (6): 433. Doi: 10.1038/ngeo2424spa
dcterms.referencesKodera, K., Koide, H., Yoshimura, H. (1999). Northern Hemisphere winter circulation associated with the North Atlantic Oscillation and stratospheric polar‐night jet. Geophysical Research Letters. 26 (4): 443-446. Doi: 10.1029/1999GL900016spa
dcterms.referencesLi, J. & Wang, J. X. (2003). A modified zonal index and its physical sense. Geophysical Research Letters. 30 (12): 1632. Doi: 10.1029/2003GL017441spa
dcterms.referencesLorenz, C. & Kunstmann, H. (2012). The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. Journal of Hydrometeorology. 13(5): 1397-1420. Doi: 10.1175/JHM-D-11-088.1spa
dcterms.referencesMagaña, V., Amador, J. A., Medina, S. (1999). The mid-summer drought over Mexico And Central America. Journal of Climate. 12 (6): 1577-1588. Doi: 10.1175/1520-0442(1999) 012<1577:TMDOMA>2.0.CO;2spa
dcterms.referencesMagaña, V. O., Vázquez, J. L., Pérez, J. L., Pérez, J. B. (2003). Impact of El Niño on precipitation in Mexico. Geofísica Internacional. 42 (3): 313-330spa
dcterms.referencesMaldonado, T., Rutgersson, A., Alfaro, E., Amador, J., Claremar, B. (2016). Interannual variability of the midsummer drought in Central America and the connection with sea surface temperatures. Advances in Geosciences. 42: 35-50. Doi: 10.5194/adgeo-42-35-2016spa
dcterms.referencesMarsh, E. J., Bruno, M. C., Fritz, S. C., Baker, P., Capriles, J. M., Hastorf, C. A. (2018). IntCal, SHCal, or a Mixed Curve? Choosing a 14 C Calibration Curve for Archaeo-logical and Paleoenvironmental Records from Tropical South America. Radiocarbon. 60 (3): 925-940. Doi: 10.1017/RDC.2018.16spa
dcterms.referencesMarshall, G. J. (2003). Trends in the southern annular mode from observations and reanalyses. Journal of Climate. 16 (24): 4134-4143. Doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2spa
dcterms.referencesMaurer, E. P., Roby, N., Stewart-Frey, I. T., Bacon, C. M.(2017). Projected twenty-first-century changes in the Central American mid-summer drought using statistically downscaled climate projections. Regional Environmental Change. 17 (8): 2421-2432. Doi: 10.1007/s10113-017-1177-6spa
dcterms.referencesMestas-Nuñez, A. M., Enfield, D. B., Zhang, C. (2007). Water vapor fluxes over the Intra-Americas Sea: Seasonal and inter-annual variability and associations with rainfall. Journal of Climate. 20 (9): 1910-1922. Doi: 10.1175/JCLI4096.1spa
dcterms.referencesMosiño, A. P. & García, E. (1966). Evaluación de la sequía intraestival en la república mexicana. Proc. Conf. Reg. Latinoamericana Unión Geogr. Int. 3: 500-516.spa
dcterms.referencesNan, S. & Li, J. (2003). The relationship between the summer pre-cipitation in the Yangtze River valley and the boreal spring Southern Hemisphere Annular Mode. Geophysical Research Letters. 30 (24): 2266. Doi: 10.1029/2003GL018381spa
dcterms.referencesNieto, R., Castillo, R., Drumond, A., Gimeno, L. (2014a). A catalog of moisture sources for continental climatic regions. Water Resources Research. 50 (6): 5322-5328. Doi: 10.1002/2013WR013901spa
dcterms.referencesNieto, R., Castillo, R., Drumond, A. (2014b). The modulation of oceanic moisture transport by the hemispheric annular modes. Frontiers in Earth Science. 2: 11. Doi: 10.3389/feart.2014.00011spa
dcterms.referencesNumaguti, A. (1999). Origin and recycling processes of pre-cipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. Journal of Geophysical Research: Atmospheres. 104 (D2): 1957-1972. Doi: 10.1029/1998JD200026spa
dcterms.referencesPoveda, G. & Mesa, O. (1999). La corriente de chorro superficial del oeste (“del Chocó”) y otras dos corrientes de chorro en Colombia: climatología y variabilidad durante las fases del ENSO. Revista Académica Colombiana de Ciencia. 23(89): 517-528spa
dcterms.referencesRodwell, M. J., Rowell, D. P., Folland, C. K. (1999). Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature. 398 (6725): 320. Doi: 10.1038/18648spa
dcterms.referencesSáenz, F. & Durán-Quesada, A. M. (2015). A climatology of low level wind regimes over Central America using a weather type classification approach. Frontiers in Earth Science. 3: 15. Doi: 10.3389/feart.2015.00015spa
dcterms.referencesSchultz, D. M., Bracken, W. E., Bosart, L. F. (1998). Planetary-and synoptic-scale signatures associated with Central American cold surges. Monthly Weather Review. 126 (1): 5-27. Doi: 10.1175/1520-0493(1998)126<0005:PASSSA>2.0.CO;2spa
dcterms.referencesSmith, T. M., Reynolds, R.W., Peterson, T. C., Lawrimore, J.(2008). Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). Journal of Climate. 21 (10): 2283-2296. Doi: 10.1175/2007JCLI2100.1spa
dcterms.referencesStahle, D. W. & Cleaveland, M. K. (1993). Southern oscillation extremes reconstructed from tree rings of the Sierra Madre Occidental and Southern Great Plains. Journal of Climate. 6(1): 129-140. Doi: 10.1175/1520-0442(1993)006<0129:SOERFT>2.0.CO;2spa
dcterms.referencesStohl, A., Forster, C., Frank, A., Seibert, P., Wotawa, G. (2005). The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics. 5 (9): 2461-2474. Doi: 10.5194/acp-5-2461-2005spa
dcterms.referencesStohl, A., Hittenberger, M., Wotawa, G. (1998). Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data. Atmospheric Environment. 32 (24): 4245-4264. Doi: 10.1016/S1352-2310(98)00184-8spa
dcterms.referencesStohl, A. & James, P. (2004). A Lagrangian analysis of the atmos-pheric branch of the global water cycle. Part i: Method des-cription, validation, and demonstration for the August 2002 flooding in Central Europe. Journal of Hydrometeorology. 5(4): 656-678. Doi: 10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2spa
dcterms.referencesStohl, A. & James, P. (2005). A Lagrangian analysis of the atmospheric branch of the global water cycle. Part ii: Moisture transports between earth’s ocean basins and river catchments. Journal of Hydrometeorology. 6 (6): 961-984. Doi: 10.1175/JHM470.1spa
dcterms.referencesStohl, A. & Thomson, D. J. (1999). A density correction for Lagrangian particle dispersion models. Boundary-Layer Meteorology. 90 (1): 155-167. Doi: 10.1175/JHM470.1spa
dcterms.referencesTaylor, M. A. & Alfaro, E. J. (2005). Climate of Central America and the Caribbean. In Encyclopedia of World Climatology. Springer. p. 183-189spa
dcterms.referencesThompson, D. W. & Wallace, J. M. (2000). Annular modes in the extratropical circulation. Part I: Month-to-month variability. Journal of climate. 13 (5): 1000-1016. Doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2spa
dcterms.referencesThompson, D. W. & Wallace, J. M. (2001). Regional climate impacts of the Northern Hemisphere Annular Mode. Science. 293 (5527): 85-89. Doi: 10.1126/science.1058958spa
dcterms.referencesTrenberth, K. E., Fasullo, J. T., Mackaro, J. (2011). Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. Journal of Climate. 24 (18): 4907-4924. Doi: 10.1175/2011JCLI4171.1spa
dcterms.referencesTrenberth, K. E. & Guillemot, C. J. (1998). Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dynamics. 14 (3): 213-231. Doi: 10.1007/s003820050219spa
dcterms.referencesUppala, S. M., Kållberg, P., Simmons, A., Andrae, U., Bechtold, V. D. C., Fiorino, M., Gibson, J., Haseler, J., Hernández, A., Kelly, G., et al. (2005). The Era-40 reanalysis. Quarterly Journal of the Royal Meteorological Society. 131 (612): 2961-3012. Doi: 10.1256/qj.04.176spa
dcterms.referencesVan Loon, H. & Rogers, J. C. (1978). The seesaw in winter temperatures between Greenland and Northern Europe. Part I: General description. Monthly Weather Review. 106(3): 296-310. Doi: 10.1175/1520-0493(1978)106<0296:TSIWTB>2.0.CO;2spa
dcterms.referencesVisbeck, M. (2009). A station-based Southern Annular Mode Index from 1884 to 2005. Journal of Climate. 22 (4): 940-950. Doi: 10.1175/2008JCLI2260.1spa
dcterms.referencesVogelezang, D. & Holtslag, A. (1996). Evaluation and model impacts of alternative boundary layer height formulations. Boundary-Layer Meteorology. 81 (3-4): 245-269. Doi: 10.1007/BF02430331spa
dcterms.referencesWallace, J. M. & Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review. 109 (4): 784-812. Doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2spa
dcterms.references2Wang, C. & Enfield, D. B. (2001). The tropical western hemisphere warm pool. Geophysical Research Letters. 28 (8): 1635-1638. Doi: 10.1029/2000GL011763spa
dcterms.referencesWang, C. & Enfield, D. B. (2003). A further study of the Tropical Western Hemisphere Warm Pool. Journal of Climate. 16(10): 1476-1493. Doi: 10.1029/2000GL011763spa
dcterms.referencesWu, Z., Li, J., Wang, B., Liu, X. (2009). Can the Southern Hemisphere Annular Mode affect China winter monsoon? Journal of Geophysical Research: Atmospheres. 114(D11). Doi: 10.1029/2008JD011501spa
dcterms.referencesXie, S. P., Noguchi, H., Matsumura, S. (1999). A hemispheric-scale quasi-decadal oscillation and its signature in Northern Japan. Journal of the Meteorological Society of Japan. Ser. II, 77 (2): 573-582. Doi: 10.2151/jmsj1965.77.2_573spa
dcterms.referencesZárate-Hernández, E. (2013). Climatología de masas invernales de aire frío que alcanzan Centroamérica y el Caribe y su relación con algunos índices árticos. Tópicos Meteoro-lógicos y Oceanográficos. 12 (1): 35-55spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.859-
dc.subject.proposalOscilación Antártica (AAO)spa
dc.subject.proposalAntarctic Oscillation (AAO);eng
dc.subject.proposalOscilación Ártica (AO)spa
dc.subject.proposalArtic Oscillation (AO)eng
dc.subject.proposalENOSspa
dc.subject.proposalENSOeng
dc.subject.proposalMesoaméricaspa
dc.subject.proposalMesoamericaeng
dc.subject.proposalTransporte de humedadspa
dc.subject.proposalMoisture transporteng
dc.subject.proposalFLEXPARTspa
dc.subject.proposalFLEXPARTeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume43spa
dc.relation.citationstartpage746spa
dc.relation.citationendpage763spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.coverage.regionMesoamérica-
dc.relation.citationissue169spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
14. Influencia de los principales modos anulares hemisféricos.pdfCiencias de la Tierra3.03 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons