Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1185 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAcosta, Iván C.-
dc.contributor.authorPosada, Leonardo-
dc.contributor.authorHuertas, Mónica G.-
dc.contributor.authorZambrano Eder, María M.-
dc.date.accessioned2021-12-10T08:08:35Z-
dc.date.available2021-12-10T08:08:35Z-
dc.date.issued2020-03-25-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1185-
dc.description.abstractLas bacterias resistentes a antibióticos representan un riesgo global para la salud pública. La transferencia horizontal de genes, que permite el intercambio de material genético en bacterias, tiene un papel importante en la adquisición de genes de resistencia. En este trabajo se evaluó el efecto de concentraciones subletales de antibióticos en la transferencia de plásmidos por conjugación y transformación en el patógeno oportunista Klebsiella pneumoniae. Aunque esta bacteria no es naturalmente competente, mostró capacidad para adquirir ADN extracelular de diversos plásmidos con muy baja frecuencia, la cual aumentó al incubar células con los antibióticos aminoglucósidos amikacina y gentamicina. La transferencia por conjugación, que se hizo con un aislamiento clínico portador del plásmido pNDM-1, también aumentó en presencia de concentraciones subletales de antibióticos. Un análisis de RNA- Seq evidenció la expresión diferencial de varios genes al incubar células en presencia de concentraciones subletales de amikacina, lo que indica cambios metabólicos, regulatorios y a nivel de componentes de la envoltura celular. Estos resultados revelan que la incubación en concentraciones subletales de algunos aminoglucósidos, en particular la amikacina, pueden alterar las propiedades celulares y promover la transferencia de elementos genéticos portadores de resistencias en K. pneumoniae, lo cual tiene relevancia para entender la diseminación de genes de resistencia en este patógeno humano.spa
dc.description.abstractAntibiotic-resistant bacteria represent a global risk to public health. Horizontal gene transfer, a common mechanism for genetic exchange in bacteria, plays an essential role in the acquisition of resistance genes. In this work, we evaluated the effect of sub-lethal concentrations of antibiotics on plasmid transfer by conjugation and transformation in the opportunistic pathogen Klebsiella pneumoniae. Despite not being naturally competent, this bacterium could acquire extracellular DNA from various plasmids at a very low frequency, which increased upon incubating cells with the aminoglycoside antibiotics amikacin and gentamicin. Transfer by conjugation analyzed using a clinical isolate carrying plasmid pNDM-1 also increased in the presence of sub-lethal concentrations of antibiotics. An RNAseq analysis showed differential expression of several genes when cells were incubated in the presence of sub-lethal concentrations of amikacin suggesting metabolic and regulatory changes, as well as alteration of cell envelope components that could affect the uptake of foreign DNA. These results suggest that sub-lethal concentrations of some aminoglycosides, in particular amikacin, can promote the transfer of resistance-bearing genetic elements in K. pneumoniae, which is relevant for understanding the spread of resistance determinants in this human pathogen.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleThe effect of aminoglycosides on horizontal gene transfer in Klebsiella pneumoniaespa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAllen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., Handelsman, J. (2010). Call of the wild: Antibiotic resistance genes in natural environments. Nat Rev Microbiol. 8 (4): 251-259.spa
dcterms.referencesAllen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A., Handelsman, J. (2009). Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. ISME J. 3 (2): 243-251.spa
dcterms.referencesAnders, S. & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol. 11 (10): R106spa
dcterms.referencesAndersson, D. I. & Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 12 (7): 465-478.spa
dcterms.referencesAndrews, J. M. (2002). Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 49 (6): 1049-1049spa
dcterms.referencesBaharoglu, Z., Krin, E., Mazel, D. (2013). RpoS Plays a Central Role in the SOS Induction by Sub- Lethal Aminoglycoside Concentrations in Vibrio cholerae. PLoS Genet. 9 (4): e1003421spa
dcterms.referencesBalestrino, D., Ghigo, J.-M., Charbonnel, N., Haagensen, J. A. J., Forestier, C. (2008). The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ Microbiol. 10 (3): 685-701spa
dcterms.referencesBarr, V., Barr, K., Millar, M. R., Lacey, R. W. (1986). β-Lactam antibiotics increase the frequency of plasmid transfer in Staphylococcus aureus. J Antimicrob Chemother. 17 (4): 409-413spa
dcterms.referencesBarrero, L. I., Castillo, J. S., Leal, A. L., Sánchez, R., Cortés, J. A., Álvarez, C. A., González, A. L. (2014). Impacto económico de la resistencia a meticilina en pacientes con bacteriemia por Staphylococcus aureus en hospitales de Bogotá. Biomédica. 34 (3): 345-353spa
dcterms.referencesBenjamini, Y. & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B. 57: 289-300spa
dcterms.referencesBhullar, K., Waglechner, N., Pawlowski, A., Koteva, K., Banks, E. D., Johnston, M. D., … Wright, G. D. (2012). Antibiotic Resistance Is Prevalent in an Isolated Cave Microbiome. PLoS One. 7 (4): e34953.spa
dcterms.referencesBloemberg, G. V, Wijfjes, A. H., Lamers, G. E., Stuurman, N., Lugtenberg, B. J. (2000). Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: New perspectives for studying microbial communities. Mol Plant Microbe Interact. 13 (11): 1170-1176.spa
dcterms.referencesBlokesch, M. (2016). Natural competence for transformation. Curr Biol. 26 (21): R1126-R1130spa
dcterms.referencesBolger, A. M., Lohse, M., Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 30 (15): 2114-2120spa
dcterms.referencesCarlet, J., Jarlier, V., Harbarth, S., Voss, A., Goossens, H., Pittet, D., Participants of the 3rd World Healthcare-Associated Infections Forum. (2012). Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action. Antimicrob Resist Infect Control. 1 (1): 11.spa
dcterms.referencesCienfuegos-Gallet, A. V, Ocampo-de Los Ríos, A. M., Sierra-Viana, P., Ramírez-Brinez, F., Restrepo-Castro, C., Roncancio-Villamil, G., … Jiménez, J. N. (2019). Risk factors and survival of patients infected with carbapenem-resistant Klebsiella pneumoniae in a KPC endemic setting: a case-control and cohort study. BMC Infect Dis. 19 (1): 830spa
dcterms.referencesClinical & Laboratory Standards Institute - CLSI. (2015). Performance standards for antimicrobial susceptibility testing: 25th informational supplement. In P. A. Wayne (Ed.), CLSI document M100-S25.spa
dcterms.referencesCosgrove, S. E. (2006). The Relationship between Antimicrobial Resistance and Patient Outcomes: Mortality, Length of Hospital Stay, and Health Care Costs. Clin Infect Di. 42 (Supplement_2): S82–S89spa
dcterms.referencesCuzon, G., Naas, T., Correa, A., Quinn, J. P., Villegas, M.-V., Nordmann, P. (2013). Dissemination of the KPC-2 carbapenemase in non-Klebsiella pneumoniae enterobacterial isolates from Colombia. Int J Antimicrob Agents. 42 (1): 59-62.spa
dcterms.referencesD’Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., … Wright, G. D. (2011). Antibiotic resistance is ancient. Nature. 477 (7365): 457-461spa
dcterms.referencesDalhoff, A. A. (2018). Membrane Interactions of Antibacterial Agents. Trends Clin Microbiol. 1 (1): 04–48.spa
dcterms.referencesEscobar-Pérez, J. A., Olarte-Escobar, N. M., Castro-Cardozo, B., Valderrama-Márquez, I. A., Garzón-Aguilar, M. I., Martínez-de la Barrera, L., … Vanegas-Gómez, N. (2013). Outbreak of NDM-1-producing Klebsiella pneumoniae in a neonatal unit in Colombia. Antimicrob Agents Chemother. 57 (4): 1957-1960.spa
dcterms.referencesFinkel, S. E. & Kolter, R. (2001). DNA as a nutrient: Novel role for bacterial competence gene homologs. J Bacteriol. 183 (21): 6288-6293spa
dcterms.referencesFrost, L. S. & Koraimann, G. (2010). Regulation of bacterial conjugation: Balancing opportunity with adversity. Future Microbiol. 5 (7): 1057-1071.spa
dcterms.referencesGaze, W. H., Krone, S. M., Larsson, D. G. J., Li, X.-Z., Robinson, J. A., Simonet, P., Zhu, Y.-G. (2013). Influence of Humans on Evolution and Mobilization of Environmental Antibiotic Resistome. Emerg Infect Dis. 19 (7): e120871spa
dcterms.referencesHarrison, J. J., Stremick, C. a, Turner, R. J., Allan, N. D., Olson, M. E., Ceri, H. (2010). Microtiter susceptibility testing of microbes growing on peg lids: A miniaturized biofilm model for high-throughput screening. Nat Protoc. 5 (7): 1236-1254.spa
dcterms.referencesHawser, S. P., Bouchillon, S. K., Hoban, D. J., Hackel, M., Johnson, J. L., Badal, R. E. (2009). Klebsiella pneumoniae isolates possessing KPC β-lactamase in Israel, Puerto Rico, Colombia and Greece. Int J Antimicrob Agents. 34 (4): 384-385spa
dcterms.referencesHoffman, L. R., D’Argenio, D. A., MacCoss, M. J., Zhang, Z., Jones, R. A., Miller, S. I. (2005). Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 436 (7054): 1171-1175spa
dcterms.referencesHolt-Harris, J. E. & Teague, O. (1916). A new culture medium for the isolation of Bacillus typhosus from stools. J Infect Dis. 18 (6): 596-600spa
dcterms.referencesHuertas, M. G., Zárate, L., Acosta, I. C., Posada, L., Cruz, D. P., Lozano, M., Zambrano, M. M. (2014). Klebsiella pneumoniae yfiRNB operon affects biofilm formation, polysaccharide production and drug susceptibility. Microbiology. 160: 2595-2606.spa
dcterms.referencesInstituto Nacional de Salud (INS). Resultados del Programa de Vigilancia por Laboratorio de Resistencia antimicrobiana en Infecciones Asociadas a la Atención en Salud (IAAS) 2016. Accessed on Nov, 2019. https://www.ins.gov.co/buscador-eventos/Informacin%20 de%20laboratorio/Informe%20Vigilancia%20por%20Laboratorio%20Resistencia%20 Antimicrobiana%20y%20Whonet%20IAAS%202016.pdfspa
dcterms.referencesJacoby, G. A. & Han, P. (1996). Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol. 34 (4): 908-911spa
dcterms.referencesJones, R. N., Guzmán-Blanco, M., Gales, A. C., Gallegos, B., Castro, A. L. L., Martino, M. D. V., … Castanheira, M. (2013). Susceptibility rates in Latin American nations: Report from a regional resistance surveillance program (2011). Brazilian J Infect Dis. 17 (6): 672-681spa
dcterms.referencesJutkina, J, Marathe, N. P., Flach, C.-F., Larsson, D. G. J. (2018). Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci Total Environ. 616-617: 172-178spa
dcterms.referencesJutkina, J., Rutgersson, C., Flach, C.-F., Joakim-Larsson, D. G. (2016). An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance. Sci Total Environ. 548-549: 131-138spa
dcterms.referencesKado, C. I. & Liu, S. T. (1981). Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 145 (3): 1365-1373spa
dcterms.referencesKopylova, E., Noé, L., Touzet, H. (2012). SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 28 (24): 3211-3217spa
dcterms.referencesKumarasamy, K. K., Toleman, M. A., Walsh, T. R., Bagaria, J., Butt, F., Balakrishnan, R., … Woodford, N. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. Lancet Infect Dis. 10 (9): 597-602spa
dcterms.referencesLandecker, H. (2016). Antibiotic Resistance and the Biology of History. Body Soc. 22 (4): 19-52spa
dcterms.referencesLeal, A.L. (2016). Boletín GREBO, Número 9, Bogotá, 2016, ISSN 2027- 0860. Bogotá.spa
dcterms.referencesLee, C.-R., Lee, J. H., Park, K. S., Jeon, J. H., Kim, Y. B., Cha, C.-J., … Lee, S. H. (2017). Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae: Epidemiology, Hypervirulence-Associated Determinants, and Resistance Mechanisms. Front Cell Infect Microbiol. 7: 483.spa
dcterms.referencesLin, J. T., Connelly, M. B., Amolo, C., Otani, S., Yaver, D. S. (2005). Global transcriptional response of Bacillus subtilis to treatment with subinhibitory concentrations of antibiotics that inhibit protein synthesis. Antimicrob Agents Chemother. 49 (5): 1915-1926spa
dcterms.referencesLiu, G., Bogaj, K., Bortolaia, V., Olsen, J. E., Thomsen, L. E. (2019). Antibiotic-Induced, Increased Conjugative Transfer Is Common to Diverse Naturally Occurring ESBL Plasmids in Escherichia coli. Front Microbiol. 10: 2119spa
dcterms.referencesMaeda, S., Ito, M., Ando, T., Ishimoto, Y., Fujisawa, Y., Takahashi, H., … Kato, S. (2006). Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli. FEMS Microbiol Lett. 255 (1): 115-120.spa
dcterms.referencesMarti, E., Variatza, E., Balcazar, J. L. (2014). The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 22 (1): 36-41spa
dcterms.referencesMcClure, R., Balasubramanian, D., Sun, Y., Bobrovskyy, M., Sumby, P., Genco, C. A., … Tjaden, B. (2013). Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res. 41 (14): e140-e140spa
dcterms.referencesMielich-Süss, B. & Lopez, D. (2015). Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environ Microbiol. 17 (3): 555-565spa
dcterms.referencesMinisterio de Salud. (2018). Plan nacional de respuesta a la resitencia a los antimicrobianos. Plan estratégico. Bogotáspa
dcterms.referencesOrtiz-Mayorga, J. L., Pineda-Rodríguez, I. G., Dennis, R. J., Porras, A. (2019). Costos atribuidos a las infecciones asociadas con la atención en salud en un hospital de Colombia, 2011-2015. Biomédica. 39 (1): 102-112spa
dcterms.referencesPalchevskiy, V. & Finkel, S. E. (2006). Escherichia coli competence gene homologs are essential for competitive fitness and the use of DNA as a nutrient. J Bacteriol. 188 (11): 3902-3910spa
dcterms.referencesPendleton, J. N., Gorman, S. P., Gilmore, B. F. (2013). Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther. 11 (3): 297-308spa
dcterms.referencesPfeltz, R. F., Schmidt, J. L., Wilkinson, B. J. (2001). A microdilution plating method for population analysis of antibiotic-resistant staphylococci. Microb Drug Resist. 7 (3): 289-295spa
dcterms.referencesPosada-Perlaza, C. E., Ramírez-Rojas, A., Porras, P., Adu-Oppong, B., Botero-Coy, A.-M., Hernández, F., … Zambrano, M. M. (2019). Bogotá River anthropogenic contamination alters microbial communities and promotes spread of antibiotic resistance genes. Sci Rep. 9 (1): 11764.spa
dcterms.referencesPruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., Glockner, F. O. (2007). SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35 (21): 7188-7196.spa
dcterms.referencesRada, A. M., Hernández-Gómez, C., Restrepo, E., Villegas, M. V. (2019). Distribución y caracterización molecular de betalactamasas en bacterias Gram negativas en Colombia, 2001-2016. Biomédica. 39: 199-220spa
dcterms.referencesRasheed, J. K., Anderson, G. J., Yigit, H., Queenan, A. M., Domenech-Sánchez, A., Swenson, J. M., … Tenover, F. C. (2000). Characterization of the Extended-Spectrum beta -Lactamase Reference Strain, Klebsiella pneumoniae K6 (ATCC 700603), Which Produces the Novel Enzyme SHV-18. Antimicrob Agents Chemother. 44 (9): 2382-2388spa
dcterms.referencesRizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., … Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci Total Environ. 447: 345-360spa
dcterms.referencesRodríguez-Rojas, A., Rodríguez-Beltrán, J., Couce, A., Blázquez, J. (2013). Antibiotics and antibiotic resistance: A bitter fight against evolution. Int J Med Microbiol. 303 (6-7): 293-297spa
dcterms.referencesRojas, L. J., Mojica, M. F., Blanco, V. M., Correa, A., Montealegre, M. C., De La Cadena, E., … Villegas, M. V. (2013). Emergence of Klebsiella pneumoniae coharboring KPC and VIM carbapenemases in Colombia. Antimicrob Agents Chemother. 57: 1101-1102spa
dcterms.referencesShon, A. S., Bajwa, R. P. S., Russo, T. A. (2013). Hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Virulence. 4 (2): 107-118.spa
dcterms.referencesShun-Mei, E., Zeng, J.-M., Yuan, H., Lu, Y., Cai, R.-X., Chen, C. (2018). Sub-inhibitory concentrations of fluoroquinolones increase conjugation frequency. Microb Pathog. 114: 57-62.spa
dcterms.referencesSkippington, E. & Ragan, M. A. (2011). Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev. 35 (5): 707-735spa
dcterms.referencesSuescún, A. V., Cubillos, J. R., Zambrano, M. M. (2006). Genes involucrados en la biogénesis de fimbrias afectan la formación de biopelículas por parte de Klebsiella pneumoniae. Biomédica. 26: 528-537spa
dcterms.referencesSun, D., Zhang, Y., Mei, Y., Jiang, H., Xie, Z., Liu, H., … Shen, P. (2006). Escherichia coli is naturally transformable in a novel transformation system. FEMS Microbiol Lett. 265 (2): 249-255.spa
dcterms.referencesVan Laar, T. A., Chen, T., You, T., Leung, K. P. (2015). Sublethal Concentrations of Carbapenems Alter Cell Morphology and Genomic Expression of Klebsiella pneumoniae Biofilms. Antimicrob Agents Chemother. 59 (3): 1707-1717.spa
dcterms.referencesVenkatachalam, I., Teo, J., Balm, M. N. D., Fisher, D. A., Jureen, R., Lin, R. T. P. (2012). Klebsiella pneumoniae carbapenemase-producing enterobacteria in hospital, Singapore. Emerg Infect Dis. 18 (8): 1381-1383.spa
dcterms.referencesVentola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. P T. 40 (4): 277-283.spa
dcterms.referencesWorld Health Organization, WHO. (2016). WHO | Global action plan on AMR. Accessed on: July 2019. Retrieved from: https://www.who.int/antimicrobial-resistance/global-action-plan/en/spa
dcterms.referencesYanisch-Perron, C., Vieira, J., Messing, J. (1985). Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 33 (1): 103-119.spa
dcterms.referencesZhang, Y., Shi, C., Yu, J., Ren, J., Sun, D. (2012). RpoS regulates a novel type of plasmid DNA transfer in Escherichia coli. PLoS One. 7 (3): e33514.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.985-
dc.subject.proposalKlebsiella pneumoniaespa
dc.subject.proposalKlebsiella pneumoniaeeng
dc.subject.proposalTransferencia horizontal de genesspa
dc.subject.proposalHorizontal gene transfereng
dc.subject.proposalResistencia a antibióticosspa
dc.subject.proposalAntibiotic resistanceeng
dc.subject.proposalAminoglucósidosspa
dc.subject.proposalAminoglycosideseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume44spa
dc.relation.citationstartpage105spa
dc.relation.citationendpage120spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue170spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
3. The effect of aminoglycosides on horizonta.pdfCiencias biomédicas658.25 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons