Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1187 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGranda, Luis N.-
dc.date.accessioned2021-12-10T08:12:52Z-
dc.date.available2021-12-10T08:12:52Z-
dc.date.issued2020-03-25-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1187-
dc.description.abstractSe estudian soluciones cosmológicas para un campo escalar acoplado mínimamente a la curvatura, en el marco del principio holográfico. Se pueden obtener soluciones phantom sin introducir grados de libertad fantasma, y el sistema autónomo contiene soluciones de expansión acelerada estables y atractores de Sitter. Para el campo con acoplamiento no-mínimo se analiza el caso especial del acoplamiento conforme y se demuestra que un campo escalar que evoluciona dinámicamente puede producir el efecto de la constante cosmológica.spa
dc.description.abstractWe study cosmological solutions for a scalar field minimally coupled to the curvature, in the framework of holographic dark energy. Phantom solutions can be obtained without introducing ghosts’ degrees of freedom, and the autonomous system contains stable accelerated expansion solutions and de Sitter attractors. For the non-minimally coupled scalar field the special case of the conformal coupling is analyzed, and it is shown that dynamically evolving scalar field produces the effect of the cosmological constant.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleThe Scalar Field Model of Dark Energy in the Framework of the Holographic Principlespa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAde, P. A. R., et al. (2016). Planck 2015 Results. XIII. Cosmological Parameters. Astron. And Astrophys., 594: 1-63. DOI: https://doi.org/10.1051/0004-6361/201525830spa
dcterms.referencesArkani-Hamed, N., Cheng, H., Luty, M. A., Mukohyama, S. (2004). Ghost Condensation and consistent infrared Modification of Gravity. JHEP 0405, 074: 1-35.spa
dcterms.referencesArmendariz-Picon, C., Mukhanov, V., Steinhardt, P. J. (2000). A dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration, Phys. Rev. Lett., 85: 4438-4421.spa
dcterms.referencesBirrell, N.D. and Davis, P.C.W. (1982). Quantum fields in curved space-time. Cambridge, United Kingdom: Cambridge University Pressspa
dcterms.referencesBousso, R. (1999). A Covariant Entropy Conjecture. JHEP. 9907: 1-33spa
dcterms.referencesCaldwell, R. R. (2002). A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B. 545: 23-29.spa
dcterms.referencesCohen, A., Kaplan, D., Nelson, A. (1999). Effective Field Theory, Black Holes, and the Cosmological Constant. Phys. Rev. Lett. 82: 4971-4974spa
dcterms.referencesFord, L.H. (1987). Gravitational Particle creation and Inflation. Phys. Rev. D35: 2955-2960spa
dcterms.referencesGranda, L. N., Jimenez, D. F. (2017). Dynamical Analysis for a Scalar-Tensor Model with Gauss- Bonnet and Non-Minimal couplings. Eur. Phys. J. C. 77, 679: 1-12.spa
dcterms.referencesGranda, L. N., Jimenez, D. F. (2018). Dynamical Analysis for a Scalar-Tensor Model with Kinetic and Non-Minimal couplings. IJMPD 27, 1850030: 1-22.spa
dcterms.referencesGranda, L. N., Oliveros, A. (2008). Infrared Cut-off Proposal for the Holographic Density. Phys. Lett. B 669: 275-277spa
dcterms.referencesGranda, L. N., Oliveros, A. (2008a). New Infrared Cut-off for the Holographic Scalar Fields Models of Dark Energy. Phys. Lett. B 671: 199-202spa
dcterms.referencesHicken, M. et al. (2009). Improved dark Energy Constraints from ~100 New CFA Supernova Type Ia Light Curves. Astrophys. J. 700: 1097-1140spa
dcterms.referencesHsu, S. D. (2004). Entropy Bounds and Dark Energy. Phys. Lett. B 594: 13-16spa
dcterms.referencesIto, M. (2005). Holographic Dark Energy Model with Non-minimal Coupling. Europhys. Lett. 71: 712-715.spa
dcterms.referencesKowalski, M. et al. (2008). Improved Cosmological Constraints from New, Old and Combined Supernova Datasets. Astrophys. Journal, 686: 749-778spa
dcterms.referencesPadmanabhan, T., Choudhury, T. R. (2002). Can the Clustered dark matter and the smooth dark energy arise from the same scalar field? Phys. Rev. D 66: 081301spa
dcterms.referencesPerlmutter, S. et al. (1988). Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Constant. Nature. 391: 51-54.spa
dcterms.referencesPerivolaropoulos, L. (2005). Crossing the Phantom Divide Barrier with Scalar-Tensor Theories. JCAP 0510, 001: 1-16spa
dcterms.referencesRatra, B., Peebles, J. (1988). Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D37: 3406-3427spa
dcterms.referencesRiess, A.G. et al. (1998). Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 116: 1009-1038spa
dcterms.referencesSami, M., Shahalam, M., Skugoreva, M., Toporensky, A. (2012). Cosmological Dynamics of Non-Minimally Coupled scalar Field system and Its late Time Cosmic Relevance. Phys. Rev. D 86, 103532: 1-17.spa
dcterms.referencesSetare, M.R., Saridakis, E.N. (2009). Non-minimally Coupled Canonical, Phantom and Quintom Models of Holographic Dark Energy. Phys. Lett. B671: 331-338spa
dcterms.referencesSusskind, L. (1995). The World as a Hologram. J. Math. Phys. 36: 6377-6396.spa
dcterms.references‘t Hooft, G. (1993). Dimensional Reduction in Quantum Gravity. arXiv:gr-qc/9310026spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.966-
dc.subject.proposalEnergía Oscuraspa
dc.subject.proposalDark Energyeng
dc.subject.proposalPrincipio Holográficospa
dc.subject.proposalHolographic Principleeng
dc.subject.proposalCampo escalarspa
dc.subject.proposalScalar Fieldeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume44spa
dc.relation.citationstartpage133spa
dc.relation.citationendpage141spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue170spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
5. The Scalar Field Model of Dark Energy.pdfCiencias físicas950.11 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons