Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1193 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorValverde, Juan C.-
dc.contributor.authorMendez, Dawa-
dc.contributor.authorArias, Dagoberto-
dc.date.accessioned2021-12-10T08:16:57Z-
dc.date.available2021-12-10T08:16:57Z-
dc.date.issued2020-03-25-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1193-
dc.description.abstractAtta cephalotes es una especie de insecto defoliador que afecta el desarrollo del Gmelina arborea en condiciones de cultivo comercial; sin embargo, son pocos los estudios que analizan el proceso de recuperación del G. arbórea desde el punto de vista fisiológico. En el presente análisis se evaluaron los efectos de la defoliación por A. cephalotes en el crecimiento y el desarrollo fisiológico e hidráulico de árboles juveniles. Se utilizaron 25 árboles con edad y condiciones morfométricas similares bajo las mismas condiciones ambientales; 16 de ellos se expusieron al ataque del insecto y su recuperación se evaluó durante 510 días, valorando el crecimiento (de diámetro y altura total), el desarrollo fisiológico (índice de área foliar, IAF; transpiración y valores de SPAD) e hidráulico (turgencia, movimiento del flujo de la savia, MFS, y contenido de humedad foliar, CHF). Se encontró que las plantas atacadas sufrieron un déficit de crecimiento diamétrico del 39,0 % y de 64,3 % en altura. A nivel fisiológico se requirieron 120 días para la recuperación de los valores de SPAD y 150 días para recuperar la conductancia estomática y el IAF a niveles similares a los del control. En cuanto a las variables hidráulicas, el periodo fue menor: la turgencia foliar se recuperó en 45 días y el MFS y la CHF en 60 días para alcanzar los mismos valores del control. Este comportamiento se explicaría por el estrés de la defoliación que obliga al árbol a reiniciar la recomposición foliar, lo que requiere el movimiento de azúcares, nutrientes y agua y hace que el movimiento hidráulico sea primordial para evitar la muerte del árbol por estrés.spa
dc.description.abstractAtta cephalotes is a species of scrubbing insect that affects the development of Gmelina arborea under commercial cultivation conditions. There has been little research regarding the physiological aspects of the recovery process of the affected tree. In the present study, we analyzed the effects of the defoliation generated by A. cephalotes on the growth and the physiological and hydraulic development of juvenile trees. We used 25 trees with similar age and morphometric conditions and placed them under the same environmental conditions; 16 of them were exposed to the attack by the insect and their recovery was evaluated for 510 days assessing growth (diametric and total height), physiological (index of foliar area - IFA, transpiration, and SPAD values) and hydraulic development (turgidity, sap flow movement – SFM, and foliar moisture content-CHF). We found that the trees under attack failed to recover their growth rate with a deficiency of 39.0% in diameter and 64.3% in height. At the physiological level, they required 120 days to recover the SPAD values and 150 days to recover the stomatal conductance and the IAF at similar levels to the control. On the other hand, with the hydraulic variables, the period was shorter: leaf turgor was recovered in 45 days and the MFS and CHF in 60 days to the same values of the control. This behavior would be explained by the defoliation stress which forces the tree to restart the foliar recomposition through the movement of sugars, nutrients, and water for which the hydraulic movement is essential to avoid death due to stress.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleEfectos del defoliador Atta cephalotes Linnaeaus. en el crecimiento y el desarrollo fisiológico e hidráulico de árboles juveniles de Gmelina arborea Roxb. en condiciones controladasspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAmaral, M., Machado-Santelli, G. (2008). Salivary system in leaf-cutting ants (Atta sexdens rubropilosa Forel, 1908) castes: A confocal study. Micon, 39: 1222-1227.spa
dcterms.referencesArenas, A. & Roces, F. (2016). Gardeners and midden workers in leaf-cutting ants learn to avoid plants unsuitable for the fungus at their worksites. Animal Behaviour, 115: 167-174. Doi: 10.1016/j.anbehav.2016.03.016spa
dcterms.referencesÁvila-Arias, C., Murillo-Cruz, R., Murillo-Gamboa, O. (2015). Selección de clones superiores de dos conjuntos genéticos de Gmelina arborea en el Pacífico Sur de Costa Rica. Revista de Ciencias Ambientales. 49 (1): 17-35. Doi: 10.15359/rca.49-1.2spa
dcterms.referencesAwotoye O., Ogunbanjo O., Jeminiwa S.M., Okanlawon F.B., Oyelami B.A. (2016). Comparative Evaluation of Fodder Yield and Leaf Quality of Some Selected Tree Species. Environment and Ecology Research. 4 (3): 116-118spa
dcterms.referencesBhusal, A., Han, S., Yoon, T. (2019). Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus × domestica Borkh.). Scientia Horticulturae. 246: 535-543.spa
dcterms.referencesBrunetti, C., Sebastiani, F., Tattini, M. (2019). Review: ABA, flavonols, and the evolvability of land plants. Plant Science. 280: 448-454spa
dcterms.referencesBush, S., Hultine, K., Sperry, J., Ehleringer, J. (2010). Calibration of thermal dissipation sap flow probes for ring and diffuse-porous trees. Tree Physiolgy. 14: 1545-1554.spa
dcterms.referencesChianucci, F., Macfarlane, C., Pisek, J., Cutini, A., Casa, R. (2014). Estimation of foliage clumping from the LAI-2000 Plant Canopy Analyzer: Effect of view caps. Trees, 29: 355-366.spa
dcterms.referencesDietrich, L. & Kahmen, A. (2019). Water relations of drought-stressed temperate trees benefit from short drought-intermitting rainfall events. Agricultural and Forest Meteorology. 265: 70-77spa
dcterms.referencesEvans, L. & Ortega, H. (2019). Xylem conductivities in grasses. Flora. 257: 170. 188spa
dcterms.referencesFajstavr, M., Bednářová, E., Nezval, O., Giagli, K., Urban, J. (2019). How needle phenology indicates the changes of xylem cell formation during drought stress in Pinus sylvestris L. Dendrochronologia. 45: 330-340.spa
dcterms.referencesGower, S.T., Kucharik, C.J., Norman, J.M., (1999). Direct and indirect estimation of leafarea index, fAPAR, and net primary production of terrestrial ecosystems. RemoteSens. Environmental. 70: 29-51.spa
dcterms.referencesHeraldo, V. & Cherrett. M. (2009) Leaf-cutting ants and early forest regeneration in central Amazonia: Effects of herbivory on tree seedling establishment, Journal of Tropical Ecology. 13: 357-370.spa
dcterms.referencesInstituto Meteorológico Nacional (IMN). (2018). Condiciones Meteorológicas Nacionales. Fecha de conslta: junio de 2018. Disponible en: http://www.imn.ac.crspa
dcterms.referencesIwasaki, N., Hori, K., Ikuta, Y. (2014). Xylem plays an important role in regulating the leaf water potential and fruit quality of Meiwa kumquat (Fortunella crassifolia Swingle) trees under drought conditions. Agricultural Water Management. 214: 47-54.spa
dcterms.referencesManiklal, A. & Yogesh, P. K. (2010). In vitro Antioxidant Activity of Different Extracts of Gmelina arborea. Free Radical Biology and Medicine. 49: 193-202.spa
dcterms.referencesMontoya J., Chacón de Ulloa P., Manzano M. (2006). Caracterización de nidos de la hormiga arriera Atta cephalotes (Hymenoptera: Myrmicinae) en Cali, Colombia. Revista Colombiana de Entomología. 32 (2): 151-8.spa
dcterms.referencesMontoya-Lerma,J., Giraldo-Echeverri, C., Armbrecht, I., Farji-Brener, A., Calle, Z. (2012). Leafcutting ants revisited: Towards rational management and control. International Journal of Pest Management. 58: 225-247spa
dcterms.referencesMougin, E., Demarez, V., Diawara, M., Hiernaux, P., Soumaguel, N., Berg, A. (2014). Estimation of IAF, fAPAR and fCover of Sahel rangelands (Gourma, Mali). Agricultural and Forest Meteorology. 198-199: 155-167spa
dcterms.referencesMunitz, S., Schwartz, A., Netzer, Y. (2019). Water consumption, crop coefficient and leaf area relations of a Vitis vinifera cv. ‘Cabernet Sauvignon’ vineyard. Agricultural Water Management. 219: 86-94.spa
dcterms.referencesMurillo-Gamboa, O., Salas-Rodríguez, A., Murillo-Cruz, R., Ávila-Arias, C. (2016). Tasa de avance de la pudrición del tronco en melina Gmelina arborea Roxb. y posibilidades de manejo. Revista Forestal Mesoamericana Kurú. 13 (32): 40-50. Doi:10.18845/rfmk.v0i0.2551spa
dcterms.referencesPeres Filho O., Dorval A., Berti Filho E. (2002) Preferência de saúva limão, Atta sexdens rubropilosa Forel, 1908 (Hymenoptera, formicidae) a diferentes espécies florestais, em condições de laboratório. Ciência Florestal, Santa Maria. 12 (2): 1-7.spa
dcterms.referencesPereyra, M., García, P., Colabelli, M., Barassi, C., Creus, C. (2019). A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Applied Soil Ecology. 53: 94-97.spa
dcterms.referencesRibeiro, G. T. & Woessner, R. A. (1980). Effect of different levels of artificial defoliation for the assessment of the damage caused by leaf-cutting ants (Atta cephalotes p.), to trees of Gmelina arborea Linne and Pinus caribaea var. hondurensis Barr & Golf. Anais da Sociedade Entomologica do Brasil. 9 (2): 261-272spa
dcterms.referencesSantana-Vieira, S., Bueno, O., Camargo-Mathias, M. (2010). The functional morphology of the metapleural gland of the leaf-cutting ant Atta laevigata (Formicidae: Attini). Micron. 41: 149-157spa
dcterms.referencesSantos Reis, B., Silva, A., Alvarez, M., Oliveira, T., Rodrigues, A. (2019). Fungal communities in gardens of the leafcutter ant Atta cephalotes in forest and cabruca agrosystems of southern Bahia State (Brazil). Fungal Biology. 119: 1170-1178spa
dcterms.referencesSilva-Junior, E., Paludo, C., Valadares, L., Lopes, N., Nascimento, F., Pupo, M. (2017). Aflatoxins produced by Aspergillus nomius ASR3, a pathogen isolated from the leaf-cutter ant Atta sexdens rubropilosa. Revista Brasileira de Farmacognosia. 27: 329-535spa
dcterms.referencesStuhrmann, M., Bergmann, M., Zech, W. (1994). Mineral nutrition, soil factors and growth rates of Gmelina arborea plantations in the humid lowlands of northern Costa Rica. Forest Ecology and Management. 70: 135-145. Doi. 10.1016/0378-1127(94)90081-7spa
dcterms.referencesSturgis, S. & Gordon, M. (2012). Nestmate recognition in ants (Hymenoptera: Formicidae): A review. Myrmecol. News. 16: 101-110spa
dcterms.referencesSwamy, S., Kushwaha, S., Puri, S. (2004). Tree growth, biomass, allometry and nutrient distribution in Gmelina arborea stands grown in red lateritic soils of Central India. Biomass and Bioenergy. 26: 305-317spa
dcterms.referencesSwamy, S., Puri, S., Singh, A. (2003). Growth, biomass, carbon storage and nutrient distribution in Gmelina arborea Roxb. stands on red lateritic soils in central India. Bioresource Technology. 90: 109-126. Doi. 10.1016/S0960-8524(03)00120-2spa
dcterms.referencesTrager, M., Ristau, T., Stoleson, S., Davidson, R., y Acciavatti, R. (2013). Carabid beetle responses to herbicide application, shelterwood seed cut and insect defoliator outbreaks. Forest Ecology and Management. 289: 269-277.spa
dcterms.referencesTrifilò, A., Kiorapostolou, N., Petruzzellis, F., Vitti, S., Casolo, V. (2019). Hydraulic recovery from xylem embolism in excised branches of twelve woody species: Relationships with parenchyma cells and non-structural carbohydrates. Plant Physiology and Biochemistry. 139: 513-520.spa
dcterms.referencesValadares, L. & do Nascimento, F. (2016). Chemical cuticular signature of leafcutter ant Atta sexdens (Hymenoptera, Formicidae) worker subcastes. Revista Brasileira de Entomologia. 60 (4): 308-311. Doi: 10.1016/j.rbe.2016.06.008spa
dcterms.referencesValadares, L., Nascimento, D., y Nascimento, F. (2015). Foliar substrate affects cuticular hydrocarbon profiles and intraspecific aggression in the leafcutter ant Atta sexdens. Insects. 15: 141-151spa
dcterms.referencesValverde, JC. (2015). Caracterización fisiológica e hidráulica de Eucaliptus tereticornis, Eucaliptus camedulensis y Gliricidia sepium en plantaciones de alta densidad para la producción de biomasa en Costa Rica. Tesis de Maestría. 71 p.spa
dcterms.referencesValverde, JC., Guevara-Bonilla, M., Arias, D., Briceño, E., Esquivel, E. (2017). Efectos de las actividades de labranza en el índice de área foliar en una plantación de Tectona grandis en la zona norte de Costa Rica. Maderas y Bosque. 23: 7-19spa
dcterms.referencesValverde, JC. & Arias, D. (2018). Variation of physiological parameters in juvenile treetops of Eucalyptus tereticornis from a three-dimensional perspective. Espirales revista multidisciplinaria de investigación. 2: 112-122.spa
dcterms.referencesWang, W., Chen, J., Luo, X., Black, A., Arain, A. (2019). Seasonality of leaf area index and photosynthetic capacity for better estimation of carbon and water fluxes in evergreen conifer forests. Agricultural and Forest Meteorology. 279: 344-353.spa
dcterms.referencesWeiss, M., Baret, F., Smith, G.J., Jonckheere, I., Coppin, P. (2004). Review of methods for in situ leaf area index (IAF) determination. Part II. Estimation of IAF, errors and sampling. Agric. For. Meteorol. 121: 37-53spa
dcterms.referencesZimmermann, D., Westhoff, M., Zimmermann, G. (2007). Foliar water supply of tall trees: Evidence for mucilage-facilitated moisture uptake from the atmosphere and the impact on pressure bomb measurements. Protoplasma. 232: 11-34spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1030-
dc.subject.proposalAtta cephalotesspa
dc.subject.proposalAtta cephaloteseng
dc.subject.proposalDefoliaciónspa
dc.subject.proposalDefoliationeng
dc.subject.proposalHidraúlica arbóreaspa
dc.subject.proposalTree hydraulicseng
dc.subject.proposalFisiología arbóreaspa
dc.subject.proposalTree physiologyeng
dc.subject.proposalGmelina arboreaspa
dc.subject.proposalGmelina arboreaeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume44spa
dc.relation.citationstartpage214spa
dc.relation.citationendpage226spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue170spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
11. Efectos del defoliador Atta cephalotes.pdfCiencias Naturales644.07 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons