Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1196 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPinto, Sandra M.-
dc.contributor.authorPinzón, Edgar F.-
dc.contributor.authorMeléndez, Angel M.-
dc.contributor.authorMendez Sanchez, Stelia-
dc.contributor.authorMiranda, David A.-
dc.date.accessioned2021-12-10T08:18:38Z-
dc.date.available2021-12-10T08:18:38Z-
dc.date.issued2020-03-25-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1196-
dc.description.abstractLa espectroscopia de impedancia eléctrica (EIS) se emplea en el estudio de las propiedades eléctricas de células en suspensión. Para medir las propiedades eléctricas de materiales se utilizan dos (sistema de electrodo bipolar), tres (tripolares) y cuatro (tetrapolares) electrodos, siendo las medidas tetrapolares la mejor opción para minimizar los efectos de polarización de electrodo. Cuando se repiten las medidas de EIS en una misma muestra, se espera obtener espectros similares, sin embargo, en algunas situaciones se encuentran diferencias significativas asociadas con la baja reproducibilidad y repetibilidad. Aquí se utilizaron células HeLa dispersas en solución acuosa para evaluar también el efecto de la limpieza en el funcionamiento de los electrodos de oro. La limpieza de las superficies de los electrodos de oro se hizo por voltamperometría cíclica. Se encontró que la reproducibilidad y la repetibilidad de las medidas de impedancia aumentaba al limpiar los electrodos. Estos resultados evidenciaron que la limpieza de la superficie de los electrodos minimizó las contribuciones de la polarización de los electrodos en las mediciones. Además, se propone un modelo de circuito para describir el efecto de las superficies sin limpiar en las medidas eléctricas. Dicho modelo confirma que el efecto observado no se debió a una impedancia de polarización convencional. Más bien se trató de una polarización activa (como un potencial), la cual se presenta a bajas frecuencias y es independiente de la frecuencia de la señal de excitación.spa
dc.description.abstractElectrical impedance spectroscopy (EIS) is used to study the electrical properties of cells in suspension. Two (bipolar electrode system), three (tripolar) and four (tetrapolar) electrodes are used to measure the electrical properties of materials with tetrapolar measurements being the best option to minimize electrode polarization effects. When EIS measurements are repeated for the same sample, almost identical spectra can be expected. However, in some situations, significant differences associated with low reproducibility and repeatability are found. Herein we used HeLa cells dispersed in an aqueous solution to evaluate the effect of cleaning on the performance of gold electrodes. The surface cleaning of gold electrodes was conducted by cyclic voltammetry. We found that the impedance measuring reproducibility and repeatability are enhanced when the electrodes are cleaned. These results show that surface cleaning minimizes the contribution of electrode polarization in measurements. Additionally, a circuital model is proposed to describe the effect of untreated surfaces on electrical measurement. The circuital model confirms that the observed effect is not due to a typical polarization impedance. Rather, it is an active polarization (interfacial polarization), which occurs at low frequencies, and is independent of the frequency of the excitation signal.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleElectrode cleaning and reproducibility of electrical impedance measurements of HeLa cells on aqueous solutionspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesBerzingi, S., Newman, M., Yu H. G. (2016). Altering bioelectricity on inhibition of human breast cancer cells. Cancer Cell Int. 16 (72): 1-9.spa
dcterms.referencesBrown, B. H., Milnes, P., Abdul, S., Tidy, J. A. (2005). Detection of cervical intraepithelial neoplasia using impedance spectroscopy: A prospective study. Journal of Obstetrics and Gynecology. 112 (6): 802-806spa
dcterms.referencesCarvalhal, R. F., Freire, S., Kubota, T. (2005). Polycrystalline gold electrodes: A comparative study of pretreatment procedures used for cleaning and thiol self-assembly monolayer formation. Electroanalysis. 4: 1251-1259.spa
dcterms.referencesChaparro, C. V., Herrera, L. V., Meléndez, A. M., Miranda, D. A. (2016). Considerations on electrical impedance measurements of electrolyte solutions in a four-electrode cell. Journal of Physics: Conference Series. 687 (6): 1-4.spa
dcterms.referencesChen, Y., Wang, L., Pradel, A., Merlen, A., Ribes, M. (2015). Underpotential deposition of selenium and antimony on gold. Journal of Solid-State Electrochemistry. 19 (8): 2399-2411spa
dcterms.referencesClarence, D. C. (1970). Variation of the transmembrane potential level as a basic mechanism of mitosis control. Oncology. 24: 438-470.spa
dcterms.referencesCuzick, J., Clavel, C., Petry, K.-U., Meijer, C. J., Hoyer, H. (2006). Overview of the European and North American studies on HPV testing in primary cervical cancer screening. J. Cancer. 119: 1095-1101spa
dcterms.referencesDas, D., Kamil, F. A., Biswas, K., Das, S. (2012). Electrical characterization of suspended HeLa cells using ECIS based biosensor. Sixth International Conference on Sensing Technology (ICST), Kolkata, 2012: 734-737. DOI: 10.1109/ICSensT.2012.6461775spa
dcterms.referencesDas, L., Das, S., Chatterjee, J. (2015). Electrical bioimpedance analysis: A new method in cervical cancer screening. Journal of Medical Engineering. 2015 (1): 1-5.spa
dcterms.referencesDean, D. A., Ramanathan, T., Machado, D., Sundararajan R. (2008). Electrical impedance spectroscopy study of biological tissues. Journal of Electrostatics. 66 (1): 165-177spa
dcterms.referencesFischer, L. M., Tenje, M., Heiskanen, A. R. (2009). Gold cleaning methods for electrochemical detection applications. Microelectronic Engineering. 86 (11): 1282-1285spa
dcterms.referencesI-Im S. Lim, Derrick Mott, H., Jin Luo, R. S., Chuan-Jian, Z. (2007). Size correlation of optical and spectroscopic properties for gold nanoparticles. The Journal of physical chemistry. 111: 14664-14669spa
dcterms.referencesLiu N., Xu Z., Morrinb A., Luo X. (2019). Low fouling strategies in electrochemical biosensors targeting disease biomarkers. Analytic Methods. 11: 702-711spa
dcterms.referencesLargeot, C., Portet, C., Chmiola, J., louis Taberna, P., Gogotsi, Y., Simon, P. (2008). Relation between the ion size and pore size for an electric double-layer capacitor. Journal American Chemical Society. 130: 2730-2731spa
dcterms.referencesMinion, L. E. & Tewari, K. S. (2018). Cervical cancer – State of the science: From angiogenesis blockade to checkpoint inhibition. Gynecologic Oncology. 148 (3): 609-621.spa
dcterms.referencesMondal, D. & Roychaudhuri, C. (2013). Extended Electrical Model for Impedance Characterization of Cultured HeLa Cells in Non-Confluent State Using ECIS Electrodes. IEEE transactions on nanobioscience. 12 (3): 239-246.spa
dcterms.referencesProdan, E., Prodan, C., Miller, J. H. (2008). The Dielectric Response of Spherical Live Cells in Suspension: An Analytic Solution. Biophysical Journal. 95 (9): 4174-4182spa
dcterms.referencesQu, D. & Shi, H. (1998). Studies of activated carbons used in double-layer capacitors. Journal of Power Sources. 74 (1): 99-107spa
dcterms.referencesRagheb, T. & Geddes, L. A. (1991). The polarization impedance of common electrode metals operated at low current density. Annals of Biomedical Engineering. 19: 151-163spa
dcterms.referencesSchwan, H. P. (1966). Alternating current electrode polarization, Biplysik. 3: 181-201spa
dcterms.referencesSchwan, H. P. (1968). Electrode polarization impedance and measurements in biological materials, Ann N Y Acad Sci. 148 (1): 191-209spa
dcterms.referencesSchwan, H. P. (1983). Electrical properties of blood and its constituents alternating current spectrocopy. Blut: Zeitschrift für die Gesamte Blutforschung. 46 (4): 185-197.spa
dcterms.referencesSchwan, H. P. (1994). Electrical properties of tissues and cell suspensions: Mechanisms and models. Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 112 (6): 70a-A7aspa
dcterms.referencesSchwan, H. P., Grimnes, S., Martinsen, O. G. (2002). Interface phenomena and dielectric properties of Biological Tissue. Encyclopedia of Surface and Colloid Science. 7: 2643-2652spa
dcterms.referencesShi, B., Agnihotri, M. V., han Chen, S., Black, R., Singer, S. J., Shi, B., Agnihotri, M. V., han Chen, S., Black, R., Singer, J. (2016). Polarization charge: Theory and applications to aqueous interfaces. Journal of Chemical Physics. 144: 1-15spa
dcterms.referencesTarasov, A. & Titov, K. (2013). On the use of the Cole – Cole equations in spectral induced polarization. Geophysical Journal International. 195: 352-356.spa
dcterms.referencesThu, T., Vu, N., Teyssedre, G., Roy, L., Laurent, C. (2017). Maxwell – Wagner effect in multilayered dielectrics: Interfacial charge measurement and modelling. Technologies. 5 (27): 1-15spa
dcterms.referencesYang, M. & Brackenbury, W. J. (2013). Membrane potential and cancer progression. Frontiers in Physiology. 4 (185): 1-10.spa
dcterms.referencesYúfera, A., Olmo, A., Daza, P., Cañete, D. (2010). Cell biometrics based on bio-impedance measurements. In Chetty G. (Ed.) and Yang J. (Ed.), Advanced Biometrics Technologies (pp. 343-366). Rijeka, Croatia: IntechOpenspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.919-
dc.subject.proposalReproducibilidadspa
dc.subject.proposalReproducibilityeng
dc.subject.proposalEspectroscopia de impedancia eléctricaspa
dc.subject.proposalElectrical impedance spectroscopyeng
dc.subject.proposalCéulas HeLaspa
dc.subject.proposalHeLa cellseng
dc.subject.proposalFenómenos de superficiespa
dc.subject.proposalSurface phenomenaeng
dc.subject.proposalModelo circuitalspa
dc.subject.proposalCircuital modeleng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume44spa
dc.relation.citationstartpage257spa
dc.relation.citationendpage268spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue170spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
14. Electrode cleaning and reproducibility of electrical.pdfCiencias químicas761.25 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons