Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1203 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSalomón, Samia-
dc.contributor.authorRivera Rondón, Carlos A.-
dc.contributor.authorZapata, Angela M.-
dc.date.accessioned2021-12-10T08:23:13Z-
dc.date.available2021-12-10T08:23:13Z-
dc.date.issued2020-06-28-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1203-
dc.description.abstractLas floraciones de cianobacterias pueden causar problemas en la calidad del agua por su rápido crecimiento y abundancia. Además de generar biomasa en exceso, causan cambios físicos, químicos y biológicos en el ecosistema. Asimismo, las cianobacterias producen neurotoxinas, hepatotoxinas y dermatotoxinas, entre otras. Los problemas asociados con las floraciones de cianobacterias han aumentado en las últimas décadas y, en consonancia, se ha incrementado a nivel global el número de investigaciones sobre las floraciones tóxicas y su efecto en los ecosistemas y la salud humana; hoy muchos países cuentan con protocolos para su manejo. Los principales factores del cambio climático global asociados con una mayor presencia y duración de las floraciones de cianobacterias son el incremento de temperatura, la eutrofización, las alteraciones hidrológicas, el aumento en la estabilidad física de la columna de agua y los cambios en las redes tróficas. En Colombia la eutrofización y el aumento en la temperatura del agua son problemas crecientes y, a pesar de ello, no existe un registro al respecto ni normas estatales que permitan reportar los casos, hacer seguimiento e implementar medidas de control y manejo. En esta revisión se presenta el estado actual del conocimiento sobre dichas floraciones en el país y las expectativas ante el cambio climático global.spa
dc.description.abstractCyanobacteria can cause problems in water quality due to rapid increases in their abundance, that known as Cianobacterial bloom. In addition to high biomass, it causes physical, chemical and biologic changes to ecosystem. Cyanobacteria also produce different kind of toxins, including neurotoxins, hepatotoxins and dermotoxins. The problems associated with cyanobacterial blooms have increased progressively in last decades. Globally, the number of research related to Harmful cyanobacterial blooms (CyanoHABs), their effects on ecosystems and human health have growth and many countries have developed protocols for their management. The main factors of global changes associated with the raise of cyanobacterial blooms are the rise in temperature, eutrophication, hydrological alterations, the increase in the physical stability of water column, and changes in trophic networks. Eutrophication and the increase in water temperature are growing issues in Colombia. Despite, there is no record of cyanobacterial blooms problems or state regulations that allow reporting cases, monitoring and implementing control and management measures. This review presents the current state of knowledge of cyanobacterial blooms in Colombia and the expectations in the global change scenario.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleFloraciones de cianobacterias en Colombia: estado del conocimiento y necesidades de investigación ante el cambio globalspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAlmanza, V., Parra, O., De M. Bicudo, C. E., Baeza, C., Beltran, J., Figueroa, R., Urrutia, R. (2016). Occurrence of toxic blooms of Microcystis aeruginosa in a central Chilean (36° Lat. S) urban lake. Revista Chilena de Historia Natural. 89 (1): 8. Doi: 10.1186/s40693- 016-0057-7spa
dcterms.referencesAutoridad Interjurisdiccional de las Cuencas de los Ríos Limay Neuquén y Negro. (2014). Protocolo de muestreo para seguimiento y control de floraciones algales aplicable a monitoreos en ambientes lóticos y lénticos de la cuenca. Secretaría de Gestion Ambientalspa
dcterms.referencesAzevedo, S., Carmichael, W., M Jochimsen, E., L Rinehart, K., Lau, S., Shaw, G., Eaglesham, G. (2003). Human Intoxication by Microcystins during Renal Dialysis Treatment in Caruaru- Brazil. Toxicology. 181-182: 441-446. Doi:10.1016/S0300-483X(02)00491-2spa
dcterms.referencesBakker, E. S., & Hilt, S. (2016). Impact of water-level fluctuations on cyanobacterial blooms: Options for management. Aquatic Ecology. 50 (3): 485-498. Doi: 10.1007/s10452-015-9556-xspa
dcterms.referencesBallot, A., Scherer, P. I., Wood, S. A. (2018). Variability in the anatoxin gene clusters of Cuspidothrix issatschenkoi from Germany, New Zealand, China and Japan. PloS one. 13 (7): e0200774. Doi: 10.1371/journal.pone.0200774spa
dcterms.referencesBouaicha, N., Miles, C.O., Beach, D.G., Labidi, Z., Djabri, A., Benayache, N.Y. Nguyen-Qang, T. (2019). Structural Diversity, Characterization and Toxicology of Microcystins. Toxins. 11 (12): 714. Doi:10.3390/toxins11120714spa
dcterms.referencesBradley, R. S., Vuille, M., Diaz, H. F., Vergara, W. (2006). Threats to water supplies in the tropical andes. Science. 312 (5781): 1755-1756.spa
dcterms.referencesBrasil, J., Attayde, J. L., Vasconcelos, F. R., Dantas, D. D. F., Huszar, V. L. M. (2016). Droughtinduced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia. 770 (1): 145-164. Doi:10.1007/s10750-015-2578-5spa
dcterms.referencesBula, G. (1985). Florecimientos nocivos de algas verde-azules en dos lagunas del departamento del Magdalena. Ingen. Pesq. 5: 89-99.spa
dcterms.referencesBuratti, F. M., Manganelli, M., Vichi, S., Stefanelli, M., Scardala, S., Testai, E., Funari, E. (2017). Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Archives of Toxicology. 91 (3): 1049-1130. Doi:10.1007/s00204-016-1913-6spa
dcterms.referencesCantoral-Uriza, A., Asencio, A., Aboal, M. (2017). Cianotoxinas: efectos ambientales y sanitarios. Medidas de Prevención. Hidrobiológica: [revista del Departamento de Hidrobiología]. 27: 241-251spa
dcterms.referencesCarey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P., Brookes, J. D. (2012). Ecophysiological adaptations that favour freshwater cyanobacteria in a changing climate. Water research. 46 (5): 1394-1407. Doi: 10.1016/j.watres.2011.12.016spa
dcterms.referencesCarmichael, W. W. & Boyer, G. L. (2016). Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae. 54: 194-212. Doi: 10.1016/j.hal.2016.02.002spa
dcterms.referencesCatherine, Q., Susanna, W., Isidora, E.-S., Mark, H., Aurélie, V., Jean-François, H. (2013). A review of current knowledge on toxic benthic freshwater cyanobacteria – Ecology, toxin production and risk management. Water Research. 47 (15): 5464-5479. Doi: 10.1016/j. watres.2013.06.042spa
dcterms.referencesChapra, S. C., Boehlert, B., Fant, C., Bierman, V. J., Henderson, J., Mills, D., . . . Paerl, H. W. (2017). Climate Change Impacts on Harmful Algal Blooms in U.S. Freshwaters: A Screening- Level Assessment. Environmental Science & Technology. 51 (16): 8933-8943. Doi: 10.1021/ acs.est.7b01498spa
dcterms.referencesChorus, I. & Bartram, J. (1999). Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. World Health Organizationspa
dcterms.referencesDalu, T. & Wasserman, R. J. (2018). Cyanobacteria dynamics in a small tropical reservoir: Understanding spatio-temporal variability and influence of environmental variables. Science of The Total Environment. 643: 835-841. Doi: 10.1016/j.scitotenv.2018.06.256spa
dcterms.referencesde la Cruz, A. A., Hiskia, A., Kaloudis, T., Chernoff, N., Hill, D., Antoniou, M. G., . . . Dionysiou, D. D. (2013). A review on cylindrospermopsin: The global occurrence, detection, toxicity and degradation of a potent cyanotoxin. Environmental Science: Processes & Impacts. 15 (11): 1979-2003. Doi: 10.1039/C3EM00353Aspa
dcterms.referencesDe la Hoz, M. (2004). Dinámica del fitoplancton de la Cienaga Grande de Santa Marta. Bulletin of Marine and Coastal Research. 33: 159-179spa
dcterms.referencesDörr, F. A., Pinto, E., Soares, R. M., de Oliveira e Azevedo, S. M., F. (2010). Microcystins in South American aquatic ecosystems: Occurrence, toxicity and toxicological assays. Toxicon. 56 (7): 1247-1256. Doi: 10.1016/j.toxicon.2010.03.018spa
dcterms.referencesDuong, T. T., Le, T. P. Q., Pflugmacher, S., Rochelle-Newall, E., Trung Kien, H., Vu, T., . . . Dang, D. (2013). Seasonal variation of cyanobacteria and microcystins in the Nui Coc Reservoir, Northern Vietnam. Journal of Applied Phycology. 25 (4): 1065-1075. Doi: 10.1007/s10811- 012-9919-9spa
dcterms.referencesElliott, J. A. (2012). Is the future blue-green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria. Water research. 46 (5): 1364- 1371. Doi: 10.1016/j.watres.2011.12.018spa
dcterms.referencesEvangelista, V., Barsanti, L., Frassanito, A. M., Passarelli, V., Gualtieri, P. (2008). Algal Toxins: Nature, Occurrence, Effect and Detection: Springer. p. 398spa
dcterms.referencesFunari, E., Manganelli, M., Buratti, F. M., Testai, E. (2017). Cyanobacteria blooms in water: Italian guidelines to assess and manage the risk associated to bathing and recreational activities. Science of The Total Environment. 598: 867-880. Doi: 10.1016/j.scitotenv.2017.03.232spa
dcterms.referencesGilbert, J. J. (1996). Effect of Temperature on the Response of Planktonic Rotifers to a Toxic Cyanobacterium. Ecology. 77 (4): 1174-1180. Doi: 10.2307/2265586spa
dcterms.referencesHamilton, D. P., Salmaso, N., Paerl, H. W. (2016). Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus loads. Aquatic Ecology. 50 (3): 351-366. Doi:10.1007/s10452-016-9594-zspa
dcterms.referencesHawkins, P., Runnegar, M., Jackson, A. R. B., Falconer, I. (1985). Severe hepatotoxicity caused by the tropical cyanobacterium blue-green alga Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Applied and Environmental Microbiology. 50: 1292-1295.spa
dcterms.referencesHerrera, N. A., Flórez, M. T., Echeverri, L. F. (2015). Evaluación preliminar de la reducción de microcistina-LR en muestras de florecimiento a través de sistemas sedimentarios. Revista internacional de contaminación ambiental. 31: 405-414.spa
dcterms.referencesHuber, V., Wagner, C., Gerten, D., Adrian, R. (2012). To bloom or not to bloom: Contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia. 169 (1): 245-256. Doi:10.1007/s00442-011-2186-7spa
dcterms.referencesHuisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H., Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology. 16 (8): 471-483. Doi:10.1038/ s41579-018-0040-1spa
dcterms.referencesHurtado-Alarcón, J. C. & Polanía-Vorenberg, J. (2014). Técnicas moleculares para la detección de cianobacterias en los embalses Riogrande II y La Fe, Colombia. Revista de Biología Tropical. 62: 381-398spa
dcterms.referencesIbarra, K., Goméz, M. C., Viloria, E. A., Arteaga, E., Cuadrado, I., Martínez, M. F., Rueda, M. (2014). Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Fecha de consulta: 6 de octubre de 2019. Disponible en: https://www.corpamag.gov.co/archivos/Publicaciones/MonitoreoCondiciones AmbientalesCambiosINVEMAR.pdfspa
dcterms.referencesIDEAM. (2015). Estudio Nacional del Agua 2014. Bogotá, D. C: Panamericana Formas e Impresos S.A. p. 496.spa
dcterms.referencesIDEAM. (2017). Atlas de radiación solar, ultravioleta y ozono de Colombia. Bogotá, D.C. Imprenta Nacional de Colombia. 171. pp. ISSN: 978 958 8067 94 0spa
dcterms.referencesINVEMAR. (2015a). Concepto Técnico sobre la Mortandad de Peces en la Ciénaga Grande de Santa Marta (Sector Tasajera), Magdalena, Ocurrida en Junio 2015. CPT-CAM-011-15.spa
dcterms.referencesINVEMAR. (2015b). Concepto Técnico Sobre Mortandad de Peces en la Ciénaga Grande de Santa Marta (Sector Caño Grande- Pajarales), Ocurrida en Noviembre de 2015.spa
dcterms.referencesJaramillo-Londoño, J. C. & Aguirre-Ramírez, N. J. (2012). Cambios espacio-temporales del plancton en la Ciénaga de Ayapel (Córdoba-Colombia), durante la época de menor nivel del agua. Caldasia. 34: 213-226.spa
dcterms.referencesJeppesen, E., Brucet, S., Naselli-Flores, L., Papastergiadou, E., Stefanidis, K., Nõges, T., Beklioğlu, M. (2015). Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia. 750 (1): 201-227. Doi:10.1007/s10750-014-2169-xspa
dcterms.referencesJöhnk, K. D., Huisman, J., Sharples, J., Sommeijer, B., Visser, P. M., Stroom, J. M. (2008). Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology. 14 (3): 495-512. Doi:10.1111/j.1365-2486.2007.01510.xspa
dcterms.referencesKaebernick, M. & Neilan, B. (2001). Ecological and molecular investigations of cyanotoxin production. FEMS Microbiology Ecology. 35: 1-9. Doi:10.1111/j.1574-6941.2001.tb00782.xspa
dcterms.referencesKaplan-Levy R.N., Hadas O., Summers M.L., Rücker J., Sukenik A. (2010). Akinetes: Dormant Cells of Cyanobacteria. In: Lubzens E., Cerda J., Clark M. (eds) Dormancy and Resistance in Harsh Environments. Topics in Current Genetics, vol 21. Springer, Berlin, Heidelbergspa
dcterms.referencesLeón, N., Rivera-Rondón, C. A., Zapata, A., Jiménez, J., Villamil, W., Arenas, G., Sánchez, T. (2012). Factors controlling phytoplankton in tropical high-mountain drinking-water reservoirs. Limnetica. 31 (2): 305-322.spa
dcterms.referencesLewis Jr, W. M. (2000). Basis for the protection and management of tropical lakes. Lakes & Reservoirs: Science, Policy and Management for Sustainable Use. 5 (1): 35-48. Doi:10.1046/ j.1440-1770.2000.00091.xspa
dcterms.referencesLitchman, E., de Tezanos Pinto, P., Klausmeier, C., Thomas, M., Yoshiyama, K. (2010). Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia. 653: 15-28. Doi:10.1007/s10750-010-0341-5spa
dcterms.referencesMancera, J. E. & Vidal, L. A. (1994). Florecimiento de microalgas relacionado con mortandad masiva de peces en el complejo lagunar Ciénaga Grande De Santa Marta, Caribe Colombiano. Boletín de Investigaciones Marinas y Costeras – INVEMAR. 23: 103-117.spa
dcterms.referencesMarengo, J., Ambrizzi, T., Rocha, R. P., Alves, L., Cuadra, S., Ramírez, V., Santos, D. (2010). Future change of climate in South America in the late XXI century: Intercomparison of scenarios from three regional climate models. Clim. Dyn. 35: 1073-1097spa
dcterms.referencesMcGregor, G. B., Stewart, I., Sendall, B. C., Sadler, R., Reardon, K., Carter, S., . . . Wickramasinghe, W. (2012). First report of a toxic Nodularia spumigena (Nostocales/ Cyanobacteria) bloom in sub-tropical Australia. I. Phycological and public health investigations. International Journal of Environmental Research And Public Health. 9 (7): 2396-2411. Doi:10.3390/ijerph9072396spa
dcterms.referencesMendoza, L. (2016). El género Sphaerocavum y dominancia de S. brasiliense y Microcystis wesenbergii (Microcystaceae, Cyanophyceae) en la floración algal de la laguna Huacachina, Perú. Revista Peruana de Biologia. 23: 53-60. Doi:10.15381/rpb.v23i1.11835spa
dcterms.referencesMercado, J. E. (1971). Inventario preliminar de la fauna y flora de la Ciénaga a Grande de Santa Marta. Proyecto para el Desarrollo de la Pesca Marítima en Colombia (INDERENA-PNUDFAO), CIP. Cartagena. 8 p.spa
dcterms.referencesMerel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International. 59: 303-327. Doi: 10.1016/j.envint.2013.06.013spa
dcterms.referencesMihaljević, M. & Stević, F. (2011). Cyanobacterial blooms in a temperate river-floodplain ecosystem: the importance of hydrological extremes. Aquatic Ecology. 45 (3): 335-349. Doi:10.1007/s10452-011-9357-9spa
dcterms.referencesMogollón. M, Aycardi. M, Galeano. J, Villalobos, J., Arango. C. (2014). variación espaciotemporal de las cianoprocariotas del antiguo delta del río Sinú, Córdoba, Colombia. Revista Intropica. 9: 92-101.spa
dcterms.referencesMontoya-Moreno, Y. & Aguirre, N. (2013). Dinámica del ensamblaje algal epifítico en el sistema de planos inundables de ayapel a través del pulso de inundación. Revista U.D.C.A Actualidad & Divulgación Científica. 16: 491-500.spa
dcterms.referencesMoss, B., Erik, b., Jeppesen, E., Søndergaard, M., Torben, b., Lauridsen, T., Liu, Z. (2013). Nitrogen, macrophytes, shallow lakes and nutrient limitation: Resolution of a current controversy? Hydrobiologia. 710: 3-21. Doi: 10.1007/s10750-012-1033-0spa
dcterms.referencesMowe, M., Mitrovic, S., Lim, R., Furey, A., Yeo, D. (2015). Tropical cyanobacterial blooms: A review of prevalence, problem taxa, toxins and influencing environmental factors. Journal of Limnology. 74 (2): 205-224. Doi: 10.4081/jlimnol.2014.1005spa
dcterms.referencesNdlela, L. (2016). An overview of cyanobacterial bloom occurrences and research in Africa over the last decade. Harmful Algae. 60: 11-26. Doi: 10.1016/j.hal.2016.10.001spa
dcterms.referencesNewell, R. I. E. (2004). Ecosystem influences of natural and cultivated populations of suspensionfeeding bivalve molluscs: A review. Journal of Shellfish Research. 23: 51-61spa
dcterms.referencesO’Neil, J. M., Davis, T. W., Burford, M. A., Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae. 14: 313- 334. Doi: 10.1016/j.hal.2011.10.027spa
dcterms.referencesPaerl, H. (2014). Mitigating Harmful Cyanobacterial Blooms in a Human- and Climatically- Impacted World. Life (Basel, Switzerland). 4: 988-1012. Doi: 10.3390/life4040988spa
dcterms.referencesPaerl, H. & Huisman, J. (2008). Blooms Like It Hot. Science (New York, N.Y.). 320: 57-58. Doi: 10.1126/science.1155398spa
dcterms.referencesPaerl, H., & Huisman, J. (2009). Climate Change: A Catalyst for Global Expansion of Harmful Cyanobacterial Blooms. Environmental Microbiology Reports. 1: 27-37. Doi: 10.1111/j.1758- 2229.2008.00004.xspa
dcterms.referencesPaerl, H. & Otten, T. (2013). Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microbial Ecology. 65: 995-1010. Doi: 10.1007/s00248-012-0159-yspa
dcterms.referencesPaerl, H. & Paul, V. J. (2012). Climate change: Links to global expansion of harmful cyanobacteria. Water Research. 46 (5): 1349-1363. Doi: 10.1016/j.watres.2011.08.002spa
dcterms.referencesPalacio Gómez, K., Hernández Atilano, E., Peñuela Mesa, G., Aguirre Ramírez, N., Vélez Macías, F. (2019). Características morfológicas de las cianobacterias y fitoplancton dominante en embalses de Antioquia: un enfoque basado en el biovolumen. Revista U.D.C.A Actualidad & Divulgación. Científica. 22 (2): e1306. Doi: 10.31910/rudca.v22.n2.2019.1306spa
dcterms.referencesPalacio, H. M., Palacio, J. A., Echenique, R. O., Sant’Anna, C. L., Ramírez, J. J. (2015). Dolichospermum lemmermannii (Cyanobacteria): A temperate species in a neotropical, eutrophic reservoir. Boletín de la Sociedad Argentina de Botánica. 50 (3): 309-321.spa
dcterms.referencesPalacio, H. M., Ramírez, J. J., Echenique, R. O., Palacio, J. A., Sant’anna, C. L. (2015). Floristic composition of cyanobacteria in a neotropical, eutrophic reservoir. Revista Brasileira de Botanica. 38 (4): 865-876. Doi: 10.1007/s40415-015-0185-3spa
dcterms.referencesPaterson, A. M., Rühland, K. M., Anstey, C. V., Smol, J. P. (2017). Climate as a driver of increasing algal production in Lake of the Woods, Ontario, Canada. Lake and Reservoir Management. 33 (4): 403-414. Doi: 10.1080/10402381.2017.1379574spa
dcterms.referencesPattanaik B., Schumann R., Karsten U. (2007). Effects of Ultraviolet Radiation on Cyanobacteria and their Protective Mechanisms. In: Seckbach J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht.spa
dcterms.referencesPeperzak, L. (2003). Climate change and harmful algal blooms in the North Sea. Acta Oecologia. 24: S139-S144. Doi: 10.1016/S1146-609X(03)00009-2spa
dcterms.referencesPetcheneshsky, T., Aguilera, A., Amé María, V., Andrinolo, D., Bauzá, L., Benítez, R., . . . Wunderlin, D. A. (2017). Cianobacterias como determinantes ambientales de la salud. In L. Giannuzzi, T. Petcheneshsky, & M. Hansen (Series Eds.). p. 258. Fecha de consulta: 18 de septiembre de 2019. Disponible en: http://www.msal.gob.ar/images/stories/bes/ graficos/0000000334cnt-Ciano_2017.pdfspa
dcterms.referencesPick, F. R. (2016). Blooming algae: A Canadian perspective on the rise of toxic cyanobacteria. Canadian Journal of Fisheries and Aquatic Sciences. 73 (7): 1149-1158. Doi: 10.1139/ cjfas-2015-0470spa
dcterms.referencesPlata-Díaz, Y. & Pimienta-Rueda, A.-L. (2011). Factors Determining The Phytoplankton Variability In The Swamps Of The Momposina Depression (Colombia). CT&F - Ciencia, Tecnología y Futuro. 4: 105-122.spa
dcterms.referencesPuyana, M., Acosta, A., Bernal-Sotelo, K., Velásquez-Rodríguez, T., Ramos, F. (2015). Spatial scale of cyanobacterial blooms in Old Providence Island, Colombian Caribbean. Universitas Scientiarum. 20: 83-105spa
dcterms.referencesRastogi, R. P., Madamwar, D., Incharoensakdi, A. (2015). Bloom Dynamics of Cyanobacteria and Their Toxins: Environmental Health Impacts and Mitigation Strategies. Frontiers in Microbiology. 6: 1254. Doi: 10.3389/fmicb.2015.01254spa
dcterms.referencesRastogi, P. R. & Madamwar, D. (2015) UV-Induced Oxidative Stress in Cyanobacteria: How Life is able to Survive? Biochemistry & Analitical Biochemistry. 4: 173. Doi: 10.4172/2161- 1009.1000173spa
dcterms.referencesRastogi, P.R., Sinha, R.P., HyunMoh, S., Lee, T.K., Kottuparambil, S., Kim, Y.J., … Han, T. (2014). Ultraviolet radiation and cyanobacteria. Journal of Photochemistry and Photobiology B Biology. 141: 154-169. Doi: 10.1016/j.jphotobiol.2014.09.020spa
dcterms.referencesReynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research. 24 (5): 417-428spa
dcterms.referencesRigosi, A., Carey, C. C., Ibelings, B. W., Brookes, J. D. (2014). The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnology and Oceanography. 59 (1): 99-114. Doi: 10.4319/lo.2014.59.1.0099spa
dcterms.referencesRivera-Rondón, C. A., Prada-Pedreros, S., Galindo, D., Maldonado-Ocampo, J. A. (2008). Effects of aquatic vegetation on the spatial distribution of Grundulus bogotensis, Humboldt 1821 (Characiformes: Characidae). Caldasia. 30 (1): 135-150.spa
dcterms.referencesRivera Gonzalez, M. & Gómez Gómez, L. (2010). Identificación de cianobacterias potencialmente productoras de cianotoxinas en la curva de Salguero del río Cesar. Luna Azul. 31: 17-25.spa
dcterms.referencesRoegner, A. F., Brena, B., González-Sapienza, G., Puschner, B. (2014). Microcystins in potable surface waters: Toxic effects and removal strategies. Journal of Applied Toxicology. 34 (5): 441-457. Doi: 10.1002/jat.2920spa
dcterms.referencesRomo, S., Soria, J., Del Campo, F., Ouahid Benkaddour, Y., Barón-Sola, Á. (2012). Water residence time and the dynamics of toxic cyanobacteria. Fresh Water Biology. 58: 1420- 1429. Doi:10.1111/j.1365-2427.2012.02734.xspa
dcterms.referencesSarmento, H., Amado, A., Descy, J.-P. (2013). Climate change in tropical fresh waters (comment on the paper ‘Plankton dynamics under different climatic conditions in space and time’ by de Senerpont Domis, et al.). Freshwater Biology. 58: 1-3. Doi:10.1111/fwb.12140spa
dcterms.referencesScholz, S., Esterhuizen-Londt, M., Pflugmacher, S. (2017). Rise of toxic cyanobacterial blooms in temperate freshwater lakes: Causes, correlations and possible countermeasures. Toxicological & Environmental Chemistry. 99: 1-58. Doi: 10.1080/02772248.2016.1269332spa
dcterms.referencesSilva, M. O. D., Blom, J. F., Yankova, Y., Villiger, J., Pernthaler, J. (2018). Priming of microbial microcystin degradation in biomass-fed gravity driven membrane filtration biofilms. Systematic and Applied Microbiology. 41 (3): 221-231. Doi: 10.1016/j.syapm.2017.11.009spa
dcterms.referencesSoares, M. C. S., Huszar, V. L. M., Miranda, M. N., Mello, M. M., Roland, F., Lürling, M. (2013). Cyanobacterial dominance in Brazil: Distribution and environmental preferences. Hydrobiologia. 717 (1): 1-12. Doi: 10.1007/s10750-013-1562-1spa
dcterms.referencesSrivastava, A. K., Rai, A. N., Neilan, B. A. ( 2013). Stress Biology of Cyanobacteria: Molecular Mechanisms to Cellular Responses. CRC Press, Boca Raton, FL. p. 375spa
dcterms.referencesSukenik, A., Hadas, O., Kaplan, A., Quesada, A. (2012). Invasion of Nostocales (cyanobacteria) to Subtropical and Temperate Freshwater Lakes - Physiological, Regional, and Global Driving Forces. Frontiers in Microbiology. 3: 86-86. Doi: 10.3389/fmicb.2012.00086spa
dcterms.referencesSukenik, A., Quesada, A., Salmaso, N. (2015). Global expansion of toxic and non-toxic cyanobacteria: Effect on ecosystem functioning. Biodiversity and Conservation. 24 (4): 889-908. Doi:10.1007/s10531-015-0905-9spa
dcterms.referencesSvrcek, C. & W Smith, D. (2004). Cyanobacteria toxins and the current state of knowledge on water treatment options: A review. Journal of Environmental Engineering and Science. 3: 155-185. Doi: 10.1139/s04-010spa
dcterms.referencesTestai, E., Scardala, S., Vichi, S., Buratti, F. M., Funari, E. (2016). Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Critical Reviews in Toxicology. 46 (5): 385-419. Doi: 10.3109/10408444.2015.1137865spa
dcterms.referencesUNESCO. (2009). Cianobacterias Planctónicas del Uruguay Manual para la identificación y medidas de gestión (978-92-9089-138-3). Fecha de consulta: 1 de agosto de 2019. Disponible en: http://limno.fcien.edu.uy/divulgacion/manual.de.cianobacterias.pdfspa
dcterms.referencesVela, L., Sevilla, E., Martín, B., Pellicer, S., Bes, M. T., Fillat, M. F., & Peleato, M. L. (2007). Las microcistinas. Revista de la Academia de Ciencias Exactas, Físicas, Químicas y Naturales de Zaragoza. 62: 135-146.spa
dcterms.referencesVisser, P., Verspagen, J., Sandrini, G., J. Stal, L., Matthijs, H., Davis, T., . . . Huisman, J. (2016). How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae. 54: 145-159. Doi: 10.1016/j.hal.2015.12.006spa
dcterms.referencesWagner, C. & Adrian, R. (2009). Cyanobacteria dominance: Quantifying the effects of climate change. Limnology and Oceanography. 54 (6part2): 2460-2468. Doi: 10.4319/lo.2009.54.6_ part_2.2460spa
dcterms.referencesZaccaroni, A. & Scaravelli, D. (2008). Toxicity of Fresh Water Algal Toxins to Humans and Animals Algal toxins: Nature, Occurence, Effect and Detection. Dordrecht: Springer Netherlands. pp. 45-89.spa
dcterms.referencesZapata, A., Rivera Rondón, C. A., Donato, J. (2006). Dynamics of photosynthetic pigments in an Andean lake in Colombia. Lakes & Reservoirs: Research & Management. 11 (1): 29-38. Doi: 10.1111/j.1440-1770.2006.00288.xspa
dcterms.referencesZapata, A., Rivera Rondón, C. A., Páez, V., Pedraza Garzón, E., García, R. (2009). Factors controlling continual cianobacterial bloom in a tropical urban wetland. Verhandlungen des Internationalen Verein Limnologie. 30: 813-816. Doi:10.1080/03680770.2009.11902244spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1050-
dc.subject.proposalEutrofizaciónspa
dc.subject.proposalEutrophicationeng
dc.subject.proposalCianotoxinasspa
dc.subject.proposalCyanotoxineng
dc.subject.proposalCalidad del aguaspa
dc.subject.proposalWater qualityeng
dc.subject.proposalAlgasspa
dc.subject.proposalAlgaeeng
dc.subject.proposalEcosistemas tropicalesspa
dc.subject.proposalTropical ecosytemeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume44spa
dc.relation.citationstartpage376spa
dc.relation.citationendpage391spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.coverage.countryColombia-
dc.relation.citationissue171spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
6. Floraciones de cianobacterias en Colombia.pdfCiencias Naturales745.19 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons