Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1205 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarrera Herrera, July A.-
dc.contributor.authorAranguren Riaño, Nelson-
dc.contributor.authorPáez Ruíz, Yuli M.-
dc.contributor.authorMolina Pacheco, Leana B.-
dc.contributor.authorPedroza Ramos, Adriana-
dc.contributor.authorDíaz Ballesteros, Carlos A.-
dc.date.accessioned2021-12-10T08:24:15Z-
dc.date.available2021-12-10T08:24:15Z-
dc.date.issued2020-06-28-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1205-
dc.description.abstractEl tiempo de retención hidráulica (TRH) constituye un factor determinante en la expresión de la estructura biológica y el funcionamiento de los ecosistemas acuáticos por su asociación con la dinámica de entrada y salida de agua del sistema, sin embargo, poco se conoce sobre el efecto de su variabilidad en la estructuración y la función de las comunidades acuáticas. En este estudio se determinó el TRH durante seis meses en un pequeño reservorio de la región andina y se analizó cómo su variación incide sobre el comportamiento de las variables físicas, químicas y biológicas. Se midieron las variables físicas y químicas del agua, y se obtuvo la batimetría del sistema y la información de diversidad taxonómica (riqueza y densidad) y funcional (riqueza y divergencia) del plancton. El TRH se estimó como la relación entre el volumen retenido y el balance del caudal. Los resultados sugirieron que: 1) un TRH menor a 30 días promovía el aumento de nutrientes y ello elevaba la productividad primaria, la concentración de oxígeno disuelto y el pH, los cuales se asocian con un aumento en la riqueza taxonómica y funcional del plancton, especialmente del fitoplancton; 2) un TRH de más de 30 días se relacionó con una menor concentración de nutrientes, el aumento de la temperatura y la conductividad eléctrica, lo que se corresponde con una simplificación de la estructura de la comunidad planctónica. Por último, se resalta el uso de la hipótesis de disturbio intermedio para comprender las observaciones y el TRH como factor determinante en la comprensión del funcionamiento de este tipo de ecosistemas.spa
dc.description.abstractThe hydraulic retention time (HRT) is a determining factor in the expression of the biological structure and the functioning of aquatic ecosystems; it is associated with the dynamics of the water entering and leaving the system, but little is known about the effect of its variability in the structuring and functioning of aquatic communities. The HRT was determined for six months in a small reservoir in the Andean region of Colombia analyzing how its variation affects the behavior of physical, chemical, and biological variables. We measured the physical and chemical variables of the water and we determined the bathymetry of the system and the taxonomic (richness and density) and functional (richness and divergence) diversity of the plankton. The TRH was estimated as the relationship between the retained volume and the flow balance. The results suggested that: 1) an HRT of less than 30 days promotes an increase in nutrients which, in turn, increases the primary productivity, the concentration of dissolved oxygen, and the pH associated all of them with an increase in plankton taxonomic and functional richness, especially accentuated in phytoplankton; 2) an HRT of more than 30 days corresponds to a lower concentration of nutrients and an increase in temperature and electrical conductivity corresponding to the simplification of plankton community structure. We highlight the use of the intermediate disturbance hypothesis to understand the observations and of HRT as a determining factor in the functioning of this type of ecosystem.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleIncidencia del tiempo de retención hidráulica en el plancton del reservorio La Chapa (Santana, Boyacá), Colombiaspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAdrian, R., O’Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Van Donk, E., Weyhenmeyer, G. A., Winder, M. (2009). Lakes as sentinels of climate change. Limnology and oceanography. 54 (6part2): 2283-2297.spa
dcterms.referencesAranguren-Riaño, N. J. & Monroy-González, J. D. (2014). Respuestas del zooplancton en un sistema tropical (embalse La Chapa, Colombia) con alta tensión ambiental. Acta Biológica Colombiana. 19 (2): 281-290.spa
dcterms.referencesAPHA-AWWA-WEF. (1999). Standard Methods for the Examination of Water and Wastewater. 20th. Washington D.C: American Public Health Association. p. 1325.spa
dcterms.referencesBicudo, C. E. & Menezes, M. (2017). Gêneros de algas de águas continentais do Brasil: chave para identificação e descrições. Terceira Edição. São Carlos: Rima. p. 552.spa
dcterms.referencesBottrell, H. H., Duncan, A., Gliwicz, Z. M., Grygierek, E., Hillbricht-Ilkowska, A., Kurasawa, H., Larsson, P., Weglenska, T. (1976). A review of some problems in zooplankton production studies. Norwegian journal of zoology. 24: 419-456.spa
dcterms.referencesCarpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological applications. 8 (3): 559-568.spa
dcterms.referencesCastro, A. D. & Bicudo, C. D. M. (2007). Flora Ficológica do Estado de São Paulo-Cryptophyceae. São Carlos: Rima. p. 144.spa
dcterms.referencesColina, M., Calliari, D., Carballo, C., Kruk, C. (2016). A trait-based approach to summarize zooplankton–phytoplankton interactions in freshwaters. Hydrobiologia. 767 (1): 221-233.spa
dcterms.referencesConnell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science. 199 (4335): 1302- 1310.spa
dcterms.referencesCox, E. J. (1996). Identification of freshwater diatoms from live material. London: Chapman & Hall. p. 158.spa
dcterms.referencesChapapría, V. E., Herrando, J. A., Peris, J. S., Folgado, J. R. M. (1995). Levantamientos y seguimientos topo-batimétricos en ingeniería de costas. Ingeniería del agua. 2 (1): 181-200spa
dcterms.referencesDe Paggi, S. J. & Paggi, J. C. (1995). Determinación de la abundancia y biomasa zooplanctónica. En: E. Lopreto y G. Tell. (Eds.), Ecosistemas de aguas continentales, metodologías para su estudio. Tomo 1 (315-324). Argentina: Ediciones Surspa
dcterms.referencesDe Senerpont Domis, L. N., Elser, J. J., Gsell, A. S., Huszar, V. L., Ibelings, B. W., Jeppesen, E., Kosten, S., Mooij, W. M., Roland, F., Sommer, U., Van Donk, E., Winder, M., Lurling, M. (2013). Plankton dynamics under different climatic conditions in space and time. Freshwater Biology. 58 (3): 463-482spa
dcterms.referencesDonald, D. B., Parker, B. R., Davies, J. M., Leavitt, P. R. (2015). Nutrient sequestration in the Lake Winnipeg watershed. Journal of Great Lakes Research. 41 (2): 630-642.spa
dcterms.referencesDonato, J., González, L., Rodríguez, C. (1996). Ecología de dos sistemas acuáticos de páramo. Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Bogotá, DC, Colombia: Colección Jorge Álvarez Lleras. 9: 164.spa
dcterms.referencesEinsle, U. (1993). Crustacea: Copepoda, Calanoida und Cyclopoida (vol. 4). Gustav Fischer Verlag. p. 208spa
dcterms.referencesEsteves, F., Bozelli, R., Castelo, C. (2011). Comunidade zooplanctônica. En: F. Esteves. (Ed.). Fundamentos de Limnologia. Terceira Edição (523-577). Brasil: Editora Interciênciaspa
dcterms.referencesFeresin, E. G., Arcifa, M. S., Silva, L. H. S. D., Esguícero, A. L. H. (2010). Primary productivity of the phytoplankton in a tropical Brazilian shallow lake: experiments in the lake and in mesocosms. Acta Limnologica Brasiliensia. 22 (4): 384-396.spa
dcterms.referencesGaviria, S., Aranguren-Riaño N. J. (2003). Guía de laboratorio para la identificación de Cladóceros (Anomopoda y Ctenopoda) y Copépodos (Calanoida y Cyclopoida). Tunja: Universidad Pedagógica y Tecnológica de Colombia. p. 22.spa
dcterms.referencesHavens, K. E., Pinto-Coelho, R. M., Beklioğlu, M., Christoffersen, K. S., Jeppesen, E., Lauridsen, T. L., Mazumder, A., Méthot, G., Alloul, B. P., Tavsanoglu, U. N., Erdoğan, Ş., Vijverberg, J. (2015). Temperature effects on body size of freshwater crustacean zooplankton from Greenland to the tropics. Hydrobiologia. 743 (1): 27-35.spa
dcterms.referencesHeino, J., Melo, A. S., Siqueira, T., Soininen, J., Valanko, S., Bini, L. M. (2015). Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology. 60 (5): 845-869.spa
dcterms.referencesHillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of phycology. 35 (2): 403-424spa
dcterms.referencesJiménez-Cisneros, B., Oki, T., Arnell, N., Benito, G., Cogley, J., Döll, P., Jiang, T., Mwakalila, S. (2014). Freshwater resources. En C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, L. L. White. (Eds.). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (229-269). United Kingdom and New York, USA: Cambridge University Press.spa
dcterms.referencesBourrelly, P. (1981). Les Algues D’eau Douce. Tomo II. Societé Nouvelle des Editions Boubeé. p. 517spa
dcterms.referencesKoste, W. (1978). Rotatoria, Die Radertiere Mitteleuropas, vol. 2. Gebruder Borntraeger. Berlin: Stuttgart. p. 234-673.spa
dcterms.referencesKosten, S. (2010). Aquatic ecosystems in hot water: effects of climate on the functioning of shallow lakes. PhD thesis. Wageningen: Wageningen University. p. 160.spa
dcterms.referencesKosten, S., Huszar, V. L., Bécares, E., Costa, L. S., van Donk, E., Hansson, L. A., Jeppesen, E., Kruk, C., Lacerot, G., Mazzeo, N., De Meester, L., Moss, B., Lürling, M., Noges, T., Romokk, S., Scheffer, M. (2012). Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology. 18 (1): 118-126spa
dcterms.referencesKruk, C., Huszar, V. L., Peeters, E. T., Bonilla, S., Costa, L., Lürling, M., Reynolds, C. S., Scheffer, M. (2010). A morphological classification capturing functional variation in phytoplankton. Freshwater biology. 55 (3): 614-627spa
dcterms.referencesLaliberté, E., Legendre, P., Shipley, B., Laliberté, M. E. (2014). Package ‘FD’. Measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.2.spa
dcterms.referencesLegendre, P. & Legendre, L. (2012). Numerical Ecology (Third Engl). Elsevier. p. 1006spa
dcterms.referencesLópez-Cualla, R. (2003). Elementos de diseño para acueductos y alcantarillados (2 ed). Bogotá. Escuela Colombiana de Ingeniería. p. 98-99spa
dcterms.referencesMcCauley, E. (1984). The estimation of the abundance and biomass of zooplankton in samples. A manual on methods for the assessment of secondary productivity in fresh waters. 17: 228-265.spa
dcterms.referencesMagrin, G.O., Marengo, J. A., Boulanger, J. P., Buckeridge, M. S., Castellanos, E., Poveda, G., Scarano, F. R., Vicuña, S. (2014). Central and South America. En V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, L. L. White. (Eds.). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (1499-1566). United Kingdom, New York, USA: Cambridge University Press.spa
dcterms.referencesMinisterio de Ambiente, Vivienda y Desarrollo Territorial. (2006). Esquema de Ordenamiento Territorial del Municipio de Santana, Boyacá.spa
dcterms.referencesMontoya, Y., Aguirre, N. (2010). Dinámica de la producción primaria fitoplanctónica en un lago tropical (ciénaga Escobillitas) a lo largo del pulso de inundación. Revista Facultad de Ingeniería Universidad de Antioquia. 55: 76-89.spa
dcterms.referencesNaselli, L. (2014). Morphological analysis of phytoplankton as a tool to assess ecological state of aquatic ecosystems: the case of Lake Arancio, Sicily, Italy. Inland Waters. 4 (1): 15-26.spa
dcterms.referencesPadisak, J. (1993). The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia. 249 (1-3): 135-156spa
dcterms.referencesParra, O., González, M., Dellarossa, V., Rivera, P., Orellana, M. (1982). Manual taxonómico del fitoplancton de aguas continentales (vol. 1, 2, 3, 4), Chile: Universidad de Concepción. p. 348.spa
dcterms.referencesParra, O., González, M., Dellarossa, V., Rivera, P., Orellana, M. (1983). Manual taxonómico del fitoplancton de aguas continentales con especial referencia al fitoplancton de chile (vol. 5), Chile: Universidad de Concepción. p. 151.spa
dcterms.referencesPomerleau, C., Sastri, A. R., Beisner, B. E. (2015). Evaluation of functional trait diversity for marine zooplankton communities in the Northeast subarctic Pacific Ocean. Journal of Plankton Research. 37 (4): 712-726spa
dcterms.referencesRamírez, A. (1999). Ecología aplicada. Diseño y análisis estadístico, Bogotá D.C: Fundación Universitaria de Bogotá Jorge Tadeo Lozano. p. 325spa
dcterms.referencesRamírez, R. J. (2000). Fitoplancton de agua dulce, aspectos ecológicos, taxonómicos y sanitarios. Medellín: Editorial Universidad de Antioquia. p. 207.spa
dcterms.referencesRamírez, J. J. & Alcaráz, H. (2002). Dinámica de la producción primaria fitoplanctónica en un sistema eutrófico tropical: laguna del Parque Norte, Medellín, Colombia. Caldasia. 24 (2): 411-423spa
dcterms.referencesRangel, L. M., Silva, L. H., Rosa, P., Roland, F., Huszar, V. L. (2012). Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia. 693 (1): 13-28spa
dcterms.referencesRangel, L. M., Soares, M. C. S., Paiva, R., Silva, L. H. S. (2016). Morphology-based functional groups as effective indicators of phytoplankton dynamics in a tropical cyanobacteriadominated transitional river–reservoir system. Ecological Indicators. 64: 217-227spa
dcterms.referencesReynolds, C. S., Elliott, J. A., Frassl, M. A. (2014). Predictive utility of trait-separated phytoplankton groups: A robust approach to modeling population dynamics. Journal of Great Lakes Research. 40: 143-150spa
dcterms.referencesReynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of plankton research. 24 (5): 417-428.spa
dcterms.referencesRice, E., Dam, H. G., Stewart, G. (2015). Impact of climate change on estuarine zooplankton: surface water warming in Long Island Sound is associated with changes in copepod size and community structure. Estuaries and coasts. 38 (1): 13-23.spa
dcterms.referencesRoldán-Pérez. G. & Ramírez-Restrepo, J. (2008). Fundamentos de limnología neotropical. Second Edition, Medellín: Editorial Universidad de Antioquia. p. 440spa
dcterms.referencesRose, A. K., Fabbro, L., Kinnear, S. (2018). Cyanobacteria breakthrough: Effects of Limnothrix redekei contamination in an artificial bank filtration on a regional water supply. Harmful algae. 76: 1-10.spa
dcterms.referencesRosenzweig, C. (2007). Assessment of observed changes and responses in natural and managed systems. En: M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. Van der Linden, C. E. Hanson. (Eds.). Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (79-131). United Kingdom, New York, USA: Cambridge University Press.spa
dcterms.referencesRücker, J., Wiedner, C., Zippel, P. (1997). Factors controlling the dominance of Planktothrix agardhii and Limnothrix redekei in eutrophic shallow lakes. Hydrobiologia. 342 (343): 107-115spa
dcterms.referencesRueda, F., Moreno-Ostos, E., Armengol, J. (2006). The residence time of river water in reservoirs. Ecological Modelling. 191 (2): 260-274spa
dcterms.referencesSant’Anna, C. L. (1984). Chlorococcales (Chlorophyceae) do Estado de São Paulo, Brasil. (67). Lubrecht & Cramer Limitedspa
dcterms.referencesShimoda, Y., Azim, M. E., Perhar, G., Ramin, M., Kenney, M. A., Sadraddini, S., Gudimov, A., Arhonditsis, G. B. (2011). Our current understanding of lake ecosystem response to climate change: what have we really learned from the north temperate deep lakes? Journal of Great Lakes Research. 37 (1): 173-193spa
dcterms.referencesStarmach, K. (1983). Euglenophyta; Eugleniny. Panstwowe Wydawnistwo Naukowe. Warszawa. p. 595.spa
dcterms.referencesStrickland, J. D. & Parsons, T. R. (1968). A practical handbook of seawater analysis. Bull. Fish. Res. Board Canada. 167: 1-311spa
dcterms.referencesStraškraba, M., Tundisi, J. G., Duncan, A. (1993). State-of-the-art of reservoir limnology and water quality management. In Comparative reservoir limnology and water quality management (213-288). Dordrecht: Springerspa
dcterms.referencesSun, J. & Liu, D. (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of plankton research. 25 (11): 1331-1346spa
dcterms.referencesTell, G. (1980). Le genre Staurastrum (Algues Chlorophycées, Desmidiées) dans le nord-est de L’Argentine. Bulletin du Muséum National d’Histoire Naturelle, section B. 4: 145-207.spa
dcterms.referencesUrban, M. C. (2004). Disturbance heterogeneity determines freshwater metacommunity structure. Ecology. 85 (11): 2971-2978spa
dcterms.referencesVan der Kamp, G., Keir, D., Evans, M. S. (2008). Long-term water level changes in closed-basin lakes of the Canadian prairies. Canadian Water Resources Journal. 33 (1): 23-38spa
dcterms.referencesVilléger, S., Mason, N. W., Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology. 89 (8): 2290-2301spa
dcterms.referencesWagner, C., Adrian, R. (2009). Cyanobacteria dominance: quantifying the effects of climate change. Limnology and Oceanography. 54 (6part2): 2460-2468spa
dcterms.referencesWallace, R., Snell, T., Ricci, C., Nogrady, T. 2006. Rotifera: Biology, ecology and systematic. En H. J. F. Dumont. (Ed.), Guides to the identification of the microinvertebrates of the continental waters of the world (299). The Netherlands: Backhuys Publishers, Leiden.spa
dcterms.referencesWetzel, R. G. & Likens, G. E. (1991). Limnological analysis, New York: Springer-Verlang. p. 391.spa
dcterms.referencesWetzel, R. (2001). Limnology: Lake and river Ecosystems (1006). Third Edition. USA: Academic Press.spa
dcterms.referencesWilby, R. L., Orr, H., Watts, G., Battarbee, R. W., Berry, P. M., Chadd, R., Dugdale, S.J., Dunbar, M. J., Elliott, J. A., Extence, C., Hannah, D. M., Holmes, N., Johnson, A. C., Knights, B., Milner, N. J., Ormerod, S. J., Solomon, D., Timlett, R., Whitehead, P. J. Wood, P. J. (2010). Evidence needed to manage freshwater ecosystems in a changing climate: turning adaptation principles into practice. Science of the Total Environment. 408 (19): 4150-4164spa
dcterms.referencesWinder, M. & Sommer, U. (2012). Phytoplankton response to a changing climate. Hydrobiologia. 698 (1): 5-16spa
dcterms.referencesZar, J. H. (1999). Biostatistical Analysis. Fourth Edition, USA: Prentice Hall. p. 663.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1022-
dc.subject.proposalTiempo de retención hidraúlicospa
dc.subject.proposalHydraulic retention timeeng
dc.subject.proposalReservoriospa
dc.subject.proposalReservoireng
dc.subject.proposalFitopplanctonspa
dc.subject.proposalPhytoplanktoneng
dc.subject.proposalZooplanctonspa
dc.subject.proposalZooplankton.eng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume44spa
dc.relation.citationstartpage407spa
dc.relation.citationendpage422spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.coverage.regionReservorio La Chapa (Santana, Boyacá), Colombia-
dc.relation.citationissue171spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
8. Incidencia del tiempo de retención hidráulica.pdfCiencias Naturales732.47 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons