Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1229 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSantana Cornélio, Gilcilene-
dc.contributor.authorAraújo de Oliveira, Elciomar-
dc.contributor.authorMagalhães Xavier, Keila-
dc.contributor.authorBarros da Silva, Gabriela .-
dc.contributor.authorRibeiro Rodrigues, Julio A.-
dc.contributor.authorHernández-Ruz, Emil J.-
dc.date.accessioned2021-12-10T08:39:24Z-
dc.date.available2021-12-10T08:39:24Z-
dc.date.issued2020-09-29-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1229-
dc.description.abstractUna de las principales hipótesis para explicar el origen de la diversidad amazónica invoca el efecto de barrera de los ríos para explicar los patrones de diversidad. Esa hipótesis propone que algunos ríos pueden separar poblaciones continuas conduciendo a la diferenciación y la especiación. En ese sentido nos propusimos estudiar la estructura genética de Pristimantis latro, una especie recién descrita que habita una región bajo fuerte presión antrópica producto de la ganadería expansiva, la minería ilegal y la construcción de represas hidroeléctricas. El ADN se extrajo de 52 individuos de P. latro y se amplificó mediante reacción en cadena de la polimerasa (PCR) usando los marcadores mitocondriales 16S rRNA y COI. Para inferir el tiempo de divergencia entre las localidades de P. latro, construimos un árbol de especies e hicimos análisis de varianza molecular (AMOVA) para inferir la diferenciación genética entre y dentro de las poblaciones de P. latro. Encontramos que P. latro presenta una estructuración genética en las poblaciones de las márgenes derecha e izquierda del río Xingu y dentro de las regiones interfluviales deTapajós-Xingu y Xingu-Tocantins. Asimismo, el tiempo de divergencia entre las poblaciones de las márgenes derecha e izquierda del río Xingu aconteció hace aproximadamente 380.000 años. El patrón de estructura genética que se encontró se corresponde con el indicado en artículos recientes para el género Pristimantis, el cual revela que las especies sin renacuajos exhiben una estructura genética que responde a la hipótesis de los ríos como barreras.spa
dc.description.abstractOne of the main hypotheses to explain the origin of Amazonian diversity is the barrier effect of the rivers known as the riverine-barrier hypothesis, which suggests that riverine barriers isolated once continuous populations leading to differentiation and speciation. In this context, we studied the genetic structure of Pristimantis latro, a newly described species that inhabits a region under marked anthropic pressure due to expansive livestock, illegal mining, and hydroelectric dam construction. The DNA was extracted from 52 P. latro individuals and then amplified via polymerase chain reaction (PCR) using the mitochondrial 16S rRNA and COI markers. To infer the time of divergence between the P. latro localities, we built a species tree and performed an analysis of molecular variance (AMOVA) to infer the genetic differentiation between and within the P. latro populations. We found that P. latro has a marked genetic structure in the populations of the right and left margins of the Xingu River and within the Tapajós-Xingu and Xingu-Tocantins interfluvial regions and that the time of divergence between the populations of the East and West banks of the Xingu River occurred approximately 380,000 years ago. This pattern of genetic structure corresponds to that reported in recent articles for the Pristimantis genus evidencing that species without tadpoles exhibit a genetic structure explained by the hypothesis of rivers as barriers.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleThe genetic structure of Pristimantis latro (Anura: Craugastoridae) mirrors traits of their life historyspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAlmeida, A.S. de, Vieira, I.C.G., Barros, M.N.R., Rocha, D.P.N. (2014). Área de endemismo Belém e Xingu: configuração e espacialização do uso da terra e da cobertura vegetal. In: Thaise Emilio; Flávio Luizão. (Org.). Cenários para Amazônia: clima, biodiversidade e uso da terra. 1ed.Manaus: INPA, p. 57-66.spa
dcterms.referencesAndersen, L.W., Fog, K., Damgaard, C. (2004). Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proceedings of the Royal Society B: Biological Sciences. 271: 1293-1302. Doi: 10.1098/rspb.2004.2720spa
dcterms.referencesAntonelli, A., Quijada-Mascareñas, A., Crawford, A.J., Bates, J.M., Velazco, P.M., Wuster, W. (2010). Molecular studies and phylogeography of Amazonian tetrapods and their relation to geological and climatic models. Molecular studies of Amazonian tetrapods. En C. Hoorn and F. P. Wesselingh (Ed), Amazonia: Landscape and Species Evolution: A look into the past (pp. 385-404). Wiley-Blackwellspa
dcterms.referencesBates, H. (1874). The naturalist on the River Amazon. John Murray, London. 506 pp.spa
dcterms.referencesBeebee, T.J.C., Griffiths, R.A. (2005). The amphibian decline crisis: A watershed for conservation biology? Biological Conservation. 125: 271-285. Doi: 10.1016/j.biocon.2005.04.009spa
dcterms.referencesBogart, J. P. (1991). The influence of life history on karyotypic evolution in frogs. Amphibian Cytogenetics and Evolution. Academic Press, San Diego. p. 233-258.spa
dcterms.referencesBurns, E.L., Eldridge, M.D.B., Houlden, B.A. (2004). Microsatellite variation and population structure in a declining Australian Hylid Litoria aurea. Molecular Ecology. 13: 1745-1757. Doi: 10.1111/j.1365-294X.2004.02190.xspa
dcterms.referencesCorander, J., Marttinen, P., Sirén, J., Tang, J. (2008). Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC bioinformatics. 9: 1-14. Doi: 10.1186/1471-2105-9-539spa
dcterms.referencesDa Rocha, D.G., Kaefer, I.L. (2019). What has become of the refugia hypothesis to explain biological diversity in Amazonia? Ecology and Evolution. 9: 4302-4309. Doi:10.1002/ece3.5051spa
dcterms.referencesDarriba, D., Taboada, G.L., Doallo, R., Posada, D. (2012). JModelTest 2: More models, new heuristics and parallel computing. Nature Methods. 9: 772. Doi: 10.1038/nmeth.2109spa
dcterms.referencesDoyle, J.J., Doyle, J.L. (1987). Isolation of plant DNA from fresh tissue. Focus. 12 (1): 13-15spa
dcterms.referencesDrummond, A.J., Ho, S.Y.W., Phillips, M.J., Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology. 4: 699-710. Doi: 10.1371/journal.pbio.0040088spa
dcterms.referencesDrummond, A.J., Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology. 7: 1-8. Doi: 10.1186/1471-2148-7-214spa
dcterms.referencesDrummond, A, J., Suchard, M.A., Xie, D., Rambaut, A. (2012). Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution. 29: 1969-1973. Doi: 10.1093/molbev/mss075spa
dcterms.referencesExcoffier, L., Laval, G., Schneider, S. (2005). Arlequin 3.0: An integrated software package for population genetics data analysis. Evolution Bioinformatics Online. 1: 47-50spa
dcterms.referencesFelsenstein, J. (1985). Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution. 39: 783-791. Doi: 10.2307/2408678spa
dcterms.referencesFolmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology Biotechnology. 3: 294-299spa
dcterms.referencesFouquet, A., Ledoux, J.B., Dubut, V., Noonan, B.P., Scotti, I. (2012). The interplay of dispersal limitation, rivers, and historical events shapes the genetic structure of an Amazonian frog. Biological Journal of the Linnean Society. 106: 356-373. Doi: 10.1111/j.1095-8312.2012.01871.xspa
dcterms.referencesFouquet, A., Martínez, Q., Courtois, E.A., Dewynter, M., Pineau, K., Gaucher, P., Blanc, M., Marty, C., Kok, P.J.R. (2013). A new species of the genus Pristimantis (Amphibia, Craugastoridae) associated with the moderately evelated massifs of French Guiana. Zootaxa. 3750: 569-586. Doi: 10.11646/zootaxa.3750.5.8spa
dcterms.referencesFouquet, A., Courtois, E.A., Baudain, D., Lima, J.D., Souza, S.M., Noonan, B.P., Rodrigues, M.T. (2015). The trans-riverine genetic structure of 28 Amazonian frog species is dependent on life history. Journal of Tropical Ecology. 31: 361-373. Doi: 10.1017/S0266467415000206spa
dcterms.referencesFourdrilis, S., Mardulyn, P., Hardy, O.J., Jordaens, K., Freitas Martins, A.M. de, Backeljau, T. (2016). Mitochondrial DNA hyperdiversity and its potential causes in the marine periwinkle Melarhaphe neritoides (Mollusca: Gastropoda). PeerJ. 4: e2549. Doi: 10.7717/peerj.2549spa
dcterms.referencesFunk, W.C., Caldwell, J.P., Peden, C.E., Padial, J.M., De la Riva, I., Cannatella, D.C. (2007). Tests of biogeographic hypotheses for diversification in the Amazonian forest frog, Physalaemus petersi. Molecular Phylogenetics and Evolution. 44: 825-837. Doi: 10.1016/j. ympev.2007.01.012spa
dcterms.referencesFunk, W.C., Caminer, M., Ron, S.R. (2012). High levels of cryptic species diversity uncovered in Amazonian frogs. Proceedings of the Royal Society of London. Series B, Biological sciences. 279: 1806-1814. Doi: 10.1098/rspb.2011.1653spa
dcterms.referencesGuayasamin, J.M., Hutter, C.R., Tapia, E.E., Culebras, J., Pyron, R.A., Morochz, C., Funk, W.C., Arteaga, A. (2017). Diversification of the rainfrog Pristimantis ornatissimus in the lowlands and Andean foothills of Ecuador. PLoS ONE. 12: 1-21.spa
dcterms.referencesHall, T.A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium: 95-98.spa
dcterms.referencesHeinicke, M.P., Duellman, W.E., Trueb, L., Means, D.B., Macculloch, R.D., Hedges, S.B. (2009). A new frog family (Anura: Terrarana) from South America and an expanded directdeveloping clade revealed by molecular phylogeny. Zootaxa. 2111: 1-35. Doi: 10.11646/ zootaxa.2211.1.1spa
dcterms.referencesInstituto Brasileiro de Geografia e Estatistica - IBGE (2012). Manual técnico da vegetação brasileira. Rio de Janeiro. 271p.spa
dcterms.referencesJobb, G., Haeseler, A. V., Strimmer, K. (2011). TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evolutionary Biology, 4:18. doi: 10.1186/1471-2148-4-18.spa
dcterms.referencesKaefer, I.L., Kaefer, I.L., Tsuji-Nishikido, B.M., Lima, A.P. (2012). Beyond the river: Underlying determinants of population acoustic signal variability in Amazonian direct-developing Allobates (Anura: Dendrobatoidea). Acta Ethologica. 15: 187-194. Doi: 10.1007/s10211- 012-0126-0spa
dcterms.referencesKaefer, I.L., Tsuji-Nishikido, B.M., Mota, E.P., Farias, I.P., Lima, A.P. (2013). The Early Stages of Speciation in Amazonian Forest Frogs: Phenotypic Conservatism despite Strong Genetic Structure. Evolutionary Biology. 40: 228-245. Doi: 10.1007/s11692-012-9205-4.spa
dcterms.referencesLampert, K.P., Rand, A.S., Mueller, U.G., Ryan, M.J. (2003). Fine-scale genetic pattern and evidence for sex-biased dispersal in the túngara frog, Physalaemus pustulosus. Molecular Ecology. 12: 3325-3334. Doi: 10.1046/j.1365-294X.2003.02016.xspa
dcterms.referencesLemmon, E.M., Lemmon, A.R., Collins, J.T., Cannatella, D.C. (2008). A new North American chorus frog species (Amphibia: Hylidae: Pseudacris) from the south-central United States. Zootaxa. 1675: 1-30.spa
dcterms.referencesLymberakis, P., Poulakakis, N., Manthalou, G., Tsigenopoulos, C.S., Magoulas, A., Mylonas, M. (2007). Mitochondrial phylogeography of Rana (Pelophylax) populations in the Eastern Mediterranean region. Molecular Phylogenetics and Evolution. 44: 115-125. Doi: 10.1016/j. ympev.2007.03.009spa
dcterms.referencesPalumbi, S.R., Martin, A., Romano, S., McMillan, W.O., Stice, L., Grabowski, G. (1991) ‘‘The Simple Fool’s Guide to PCR, Version 2.0.’’ Privately published document compiled by S. Palumbi, Dept. Zoology, Univ. Hawaii.spa
dcterms.referencesMiller, M.P. (2005). Alleles In Space (AIS): Computer Software for the Joint Analysis of Interindividual Spatial and Genetic Information. Journal of Heredity. 96: 722-724. Doi: 10.1093/jhered/esi119spa
dcterms.referencesMoraes, L.J.C.L., Pavan, D., Barros, M.C., Ribas, C.C. (2016). The combined influence of riverine barriers and flooding gradients on biogeographical patterns for amphibians and squamates in south-eastern Amazonia. Journal of Biogeography. 43: 2113-2124. Doi: 10.1111/jbi.12756spa
dcterms.referencesOliveira, E.A., Rodrigues, L.R., Kaefer, I.L., Pinto, K.C., Hernández-Ruz, E.J. (2017). A new species of Pristimantis from eastern Brazilian Amazonia (Anura: Craugastoridae). ZooKeys. 2017: 101-129. Doi: 10.3897/zookeys.687.13221spa
dcterms.referencesOliveira, E.A., Silva, L.A., Silva, E.A.P., Guimaraes, K.L.A., Penhacek, M.P., Martínez, J.G., Rodrigues, L.R.R., Santana, D.J., Hernández-Ruz, E.J. (2020). Four new species of Pristimantis Jiménez de la Espada, 1870 (Anura: Craugastoridae) in the eastern Amazon. PLoS One. 15 (3): e0229971spa
dcterms.referencesRibas, C.C., Aleixo, A., Nogueira, A.C.R., Miyaki, C.Y., Cracraft, J., Andre, A. (2012). A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proceedings of the Royal Society of London. Series B, Biological sciences. 279: 681-689. Doi: 10.1098/rspb.2011.1120spa
dcterms.referencesRodríguez, A., Bomer, M., Pabijan, M., Gehara, M., Haddad, C.F.B. (2015). Genetic divergence in tropical anurans: Deeper phylogeographic structure in forest specialists and in topographically complex regions. Evolutionary Biology. 29: 765-785.spa
dcterms.referencesSalzburger, W., Ewing, G.B., von Haeseler, A. (2011). The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Molecular Ecology. 20: 1952-1963. Doi: 10.1111/j.1365-294X.2011.05066.xspa
dcterms.referencesSimões, P.I., Stow, A., Hödl, W., Amézquita, A., Farias, I.P., Lima, A.P. (2014). The value of including intraspecific measures of biodiversity in environmental impact surveys is highlighted by the Amazonian brilliant-thighed frog (Allobates femoralis). Tropical Conservation Science. 7: 811-828. Doi: 10.1177/194008291400700416spa
dcterms.referencesTamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution. 30: 2725-2729. Doi: 10.1093/molbev/mst197spa
dcterms.referencesThompson, J.D., Higgins, D.G., Gibson, T.J. (1996). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research. 22: 4673-4680. Doi: 10.1093/ nar/22.22.467spa
dcterms.referencesVieites, D.R., Wollenberg, K.C., Andreone, F., Kohler, J., Glaw, F., Vences, M. (2009) Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. Proceedings of the National Academy of Sciences. 106: 8267-8272. Doi: 10.1073/ pnas.0810821106spa
dcterms.referencesVos, C.C., Antonisse-de Jong, A.G., Goedhart, P.W., Smulders, M.J.M. (2001). Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity. 86: 598 - 608. PMID: 11554976spa
dcterms.referencesVos, C.C., Antonisse-de Jong, A.G., Goedhart, P.W., Smulders, M.J.M. (2001). Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity. 86: 598 - 608. PMID: 11554976spa
dcterms.referencesWells, K.D. (2007). The Ecology and Behavior of Amphibians. Chicago, USA: The University of Chicago Press. Pp. 1148spa
dcterms.referencesWright, S. (1943). Isolation by distance. Genetics. 28: 114-138. Doi: 10.5194/isprs-Archives-XLII- 5-W1-419-2017spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.956-
dc.subject.proposalADN Mitocondrialspa
dc.subject.proposalMitochondrial DNAeng
dc.subject.proposalAislamiento por distanciaspa
dc.subject.proposalIsolation by distanceeng
dc.subject.proposalRíos ccomo barrerasspa
dc.subject.proposalRivers as barriereng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume44spa
dc.relation.citationstartpage729spa
dc.relation.citationendpage739spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue172spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
6. The genetic structure of Pristimantis latro.pdfCiencias naturales452.07 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons