Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1237 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLópez Solis, Carmen L.-
dc.contributor.authorCórdoba Jiménez, Denis G.-
dc.contributor.authorCuervo Ochoa, Germán-
dc.contributor.authorMartín Franco, Jaime-
dc.contributor.authorGutiérrez Valencia, Tania M.-
dc.date.accessioned2021-12-10T08:44:00Z-
dc.date.available2021-12-10T08:44:00Z-
dc.date.issued2020-09-29-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1237-
dc.description.abstractSe sintetizó un nuevo polímero orgánico con características que le permiten actuar como agente extractante de iones metálicos. Se fabricaron membranas a partir de policloruro de vinilo (PVC), plastificante éter de 2 nitrofenil octilo (NPOE) y polímero sintetizado que se emplearon en la extracción de oro a partir de disoluciones acuosas del metal. Se estudió, además, el efecto de la adición de tetrafenilborato de sodio (Na-TFB) para mejorar el intercambio iónico entre la solución de trabajo y la membrana fabricada. Se determinó la composición y el espesor de la membrana con la cual se obtuvo el mayor porcentaje de extracción de oro, así como la selectividad del material hacia Au3+ en presencia de otros iones metálicos (Cu2+, Pb2+, Ca2+, Zn2+, Fe3+, Ni2+ y Al3+), cada uno con una concentración inicial de 1,4x10-4 M. Los resultados mostraron que en un ciclo se alcanzaron porcentajes de extracción cercanos al 80 % del contenido inicial de la solución (1x 10-4 M), con la ventaja de que se pudo reutilizar la misma membrana en tres ciclos sin pérdidas apreciables de eficiencia.spa
dc.description.abstractWe synthesized a new organic polymer whose characteristics allow it to act as an extracting agent for metal ions. Membranes were made from polyvinylchloride (PVC) and 2 nitrophenyl octyl ether plasticizer (NPOE) together with the synthesized polymer and were used to extract gold from aqueous solutions of the metal. Additionally, we added sodium tetraphenylborate (Na-TFB) to improve the ion exchange between the working solution and the manufactured membrane. We determined the composition and membrane thickness showing the highest percentage of gold extraction, as well as the material selectivity towards Au3 + in the presence of other metal ions (Cu2+, Pb2+, Ca2+, Zn2+, Fe3+, Ni2+, and Al3+), each with an initial concentration of 1.4x10-4 M. The results showed percentages close to 80% of the initial content of the solution (1x10-4 M) extracted in one cycle; besides we were able to reuse the same membrane during three cycles without appreciable losses of efficiency.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleExtracción selectiva de oro mediante membranas basadas en un nuevo material polimérico con sitios activos complejantesspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesAta, N., Yazicigil, Z., Oztekin, Y. (2008). The electrochemical investigation of salts partition with ion exchange membranes. Journal of Hazardous Materials. 160 (1): 154-160. Doi: 10.1016/j. jhazmat.2008.02.099spa
dcterms.referencesAtia, A. A. (2005). Adsorption of silver(I) and gold(III) on resins derived from bisthiourea and application to retrieval of silver ions from processed photo films. Hydrometallurgy. 80 (1-2): 98-106. Doi: 10.1016/J.HYDROMET.2005.07.004spa
dcterms.referencesBenavente, J., Oleinikova, M., Muñoz, M., Valiente, M. (1998). Characterization of novel activated composite membranes by impedance spectroscopy. Journal of Electroanalytical Chemistry. 451 (1-2): 173-180. Doi: 10.1016/S0022-0728(98)00070-9spa
dcterms.referencesBraibant, B., Bourgeois, D., Meyer, D. (2018). Three-liquid-phase extraction in metal recovery from complex mixtures. Separation and Purification Technology. 195: 367-376. Doi: 10.1016/J.SEPPUR.2017.12.036spa
dcterms.referencesFotoohi, B. & Mercier, L. (2015). Recovery of precious metals from ammoniacal thiosulfate solutions by hybrid mesoporous silica: 2 - A prospect of PGM adsorption. Separation and Purification Technology. 149: 82-91. Doi: 10.1016/j.seppur.2015.05.020spa
dcterms.referencesFu, F. & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management. 92 (3): 407-418. Doi: 10.1016/j.jenvman.2010.11.011spa
dcterms.referencesGohil, G. S., Binsu, V. V, Shahi, V. K. (2006). Preparation and characterization of mono-valent ion selective polypyrrole composite ion-exchange membranes. Journal of Membrane Science. 280 (1-2): 210-218. Doi: 10.1016/j.memsci.2006.01.020spa
dcterms.referencesHilson, G. & Monhemius, A. J. (2006). Alternatives to cyanide in the gold mining industry: what prospects for the future? Journal of Cleaner Production. 14 (12-13): 1158-1167. Doi: 10.1016/J.JCLEPRO.2004.09.005spa
dcterms.referencesHosseini, S. M., Madaeni, S. S., Khodabakhshi, A. R. (2010). Heterogeneous cation exchange membrane: preparation, characterization and comparison of transport properties of mono and bivalent cations. Separation Science and Technology. 45 (16): 2308-2321. Doi: 10.1080/01496395.2010.497792spa
dcterms.referencesJudd, S. J. (2017). Membrane technology costs and me. Water Research. 122: 1-9. Doi: 10.1016/j. watres.2017.05.027spa
dcterms.referencesKubota, F., Kono, R., Yoshida, W., Sharaf, M., Kolev, S. D., Goto, M. (2019). Recovery of gold ions from discarded mobile phone leachate by solvent extraction and polymer inclusion membrane (PIM) based separation using an amic acid extractant. Separation and Purification Technology. 214: 156-161. Doi: 10.1016/j.seppur.2018.04.031spa
dcterms.referencesLi, J. & Miller, J. (2002). Reaction kinetics for gold dissolution in acid thiourea solution using formamidine disulfide as oxidant. Hydrometallurgy. 63 (3): 215-223. Doi: 10.1016/S0304- 386X(01)00212-2spa
dcterms.referencesMonier, M., Akl, M. A., Ali, W. M. (2014). Modification and characterization of cellulose cotton fibers for fast extraction of some precious metal ions. International Journal of Biological Macromolecules. 66: 125-134. Doi: 10.1016/j.ijbiomac.2014.01.068spa
dcterms.referencesMora-Tamez, L., Rodríguez de San Miguel, E., Briones-Guerash, U., Munguía-Acevedo, N. M., de Gyves, J. (2014). Semi-interpenetrating hybrid membranes containing ADOGEN® 364 for Cd(II) transport from HCl media. Journal of Hazardous Materials: 280: 603-611. Doi: 10.1016/j.jhazmat.2014.08.056spa
dcterms.referencesSong, J., Huang, T., Qiu, H., Niu, X., Li, X. M., Xie, Y., He, T. (2018). A critical review on membrane extraction with improved stability: Potential application for recycling metals from city mine. Desalination. 440: 18-38. Doi: 10.1016/j.desal.2018.01.007spa
dcterms.referencesSyed, S. (2012). Recovery of gold from secondary sources-A review. Hydrometallurgy. 115-116: 30-51. Doi: 10.1016/j.hydromet.2011.12.012spa
dcterms.referencesTan, P., Jiang, H. R., Zhu, X. B., An, L., Jung, C. Y., Wu, M. C., … Zhao, T. S. (2017). Advances and challenges in lithium-air batteries. Applied Energy. 204: 780-806. Doi: 10.1016/J. APENERGY.2017.07.054spa
dcterms.referencesTofan, L., Bunia, I., Paduraru, C., Teodosiu, C. (2017). Synthesis, characterization and experimental assessment of a novel functionalized macroporous acrylic copolymer for gold separation from wastewater. Process Safety and Environmental Protection. 106 (2): 150-162. Doi: 10.1016/j.psep.2017.01.002spa
dcterms.referencesVillalobos, L. F., Yapici, T., Peinemann, K. V. (2014). Poly-thiosemicarbazide membrane for gold recovery. Separation and Purification Technology. 136: 94-104. Doi: 10.1016/j. seppur.2014.08.027spa
dcterms.referencesWang, D. Q., Zhu, M. L., Xuan, F. Z. (2017). Correlation of local strain with microstructures around fusion zone of a Cr-Ni-Mo-V steel welded joint. Materials Science and Engineering A. 685: 205-212. Doi: 10.1016/j.msea.2017.01.015spa
dcterms.referencesZhang, J., Shen, S., Cheng, Y., Lan, H., Hu, X., Wang, F. (2014). Dual lixiviant leaching process for extraction and recovery of gold from ores at room temperature. Hydrometallurgy. 144- 145: 114-123. Doi: 10.1016/j.hydromet.2014.02.001spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.938-
dc.subject.proposalPolímerospa
dc.subject.proposalPolymereng
dc.subject.proposalMembranaspa
dc.subject.proposalMembraneeng
dc.subject.proposalExtracciónspa
dc.subject.proposalExtractioneng
dc.subject.proposalOrospa
dc.subject.proposalGoldeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume44spa
dc.relation.citationstartpage814spa
dc.relation.citationendpage827spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue172spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
14. Extracción selectiva de oro mediante membranas basadas.pdfCiencias químicas1.08 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons