Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1239 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuarín, Paula-
dc.contributor.authorCristancho, Jonatan-
dc.contributor.authorCastillo, John J.-
dc.date.accessioned2021-12-10T08:45:05Z-
dc.date.available2021-12-10T08:45:05Z-
dc.date.issued2020-09-29-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1239-
dc.description.abstractSe desarrolló un novedoso método electroquímico para la detección rápida y analítica de Staphylococcus aureus en cultivos y muestras de leche enriquecidas con peróxido de hidrógeno (H2O2) mediante el consumo de péroxido por electrodos serigrafiados de oro (ESO) modificados con cisteína y peroxidasa de pasto Guinea (PPG). La peroxidasa de las hojas del pasto Guinea, con una actividad específica de 470 U mg-1, se inmovilizó sobre la superficie de los ESO previamente modificada con cisteína. Los voltamperogramas cíclicos de los ESO modificados con PPG y cisteína en presencia de ferrocianuro de potasio como sonda redox exhibieron un incremento en la corriente de aproximadamente 5 % comparado con el electrodo sin modificar. El ESO modificado mostró una buena respuesta electrocatalítica en la reducción de H2O2. El medio de cultivo en presencia de 1x10-3 M de H2O2 registró una disminución en la corriente por la catalasa presente en S. aureus a un potencial de -780 mV. El ESO modificado pudo detectar S. aureus en un rango de concentraciones entre 3x102 and 3x108 UFC mL-1 con un límite de detección de 102 ufc mL-1, un tiempo de detección de ~20 min y una sensibilidad de 0,020 mA UFC-1.spa
dc.description.abstractWe present a novel electrochemical method for a rapid analytical detection of Staphylococcus aureus in culture and spiked milk samples through hydrogen peroxide (H2O2) consumption on a screenprinted gold electrode (SPGE) modified with cysteine and peroxidase from Guinea grass leaves (GGP). This peroxidase (POD) had a specific activity of 470 U mg-1 and it was immobilized on an SPGE surface previously modified with cysteine. Cyclic voltammograms of gold electrodes modified with peroxidase and cysteine in the presence of potassium ferrocyanide as a redox probe demonstrated an increase of approximately 5% in the current compared to the bare gold electrode. The SPGE modified electrode exhibited a good electrocatalytic response towards H2O2 reduction. We added a constant H2O2 concentration of 1x10-3 M to the culture medium and measured the decrease in the H2O2 current at -780 mV consumed by catalase from S. aureus. Our modified electrode proved to sense S. aureus in a range concentration between 3x102 and 3x108 CFU/mL-1 with a detection limit of 102 CFU/mL-1, detection time of about ~20 min, and a sensitivity of 0.020 mA CFU-1.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleRapid electrochemical detection of Staphylococcus aureus based on screen-printed gold electrodes modified with cysteine and Guinea grass (Panicum maximum) peroxidasespa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesAlexandre, D.L, Melo, A.A, Furtado, R.F, Borges, M.F, Figueiredo, E.A, Biswas, A, Cheng, H.N, Alves, C. (2018). A rapid and specific biosensor for Salmonella typhimurium detection in milk. Food and Biop Techn. 11: 748-756.spa
dcterms.referencesAmiri, M., Bezaatpour, A., Jafari, H., Boukherroub, R., Szunerits, S. (2018). Electrochemical methodologies for the detection of pathogens. ACS Sensors. 6: 1059-1086.spa
dcterms.referencesBradford, M.M. (1976). A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. 254: 248-254.spa
dcterms.referencesCastillo, J., Ferapontova, E., Hushpulian, D., Tasca, F., Tishkov, V., Chubar, Gorton, L. (2006). Direct electrochemistry and bioelectrocatalysis of H2O2 reduction of recombinant tobacco peroxidase on graphite. Effect of peroxidase single-point mutation on Ca2+-modulated catalytic activity. J Electroanal Chem. 588: 112-121.spa
dcterms.referencesCastillo, J. J., Rindzevicius, T., Wu, K., Schmidt, M. S., Janik, K. A., Boisen, A., Castillo-León, J. (2014). Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates. J Nanop Res. 16: 2524-2532spa
dcterms.referencesCenteno, D. A., Solano, X. H., Castillo, J. J. (2017). A new peroxidase from leaves of Guinea grass (Panicum maximum): A potential biocatalyst to build amperometric biosensors. Bioelectrochemistry. 116: 33-38.spa
dcterms.referencesChen, S., Yuan, R., Chai, Y., Xu, L., Wang, N., Li, X., Zhang, L. (2006). Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase (HRP) on the layerby- layer assembly films of gold colloidal nanoparticles and toluidine blue. Electroanalysis. 18: 471-477.spa
dcterms.referencesEscamilla-Gómez, V., Campuzano, S., Pedrero, M., Pingarrón, J. M. (2007). Development of an amperometric immunosensor for the quantification of Staphylococcus aureus using selfassembled monolayer-modified electrodes as immobilization platforms. Electroanalysis. 19: 1476-1482spa
dcterms.referencesGao, F., Yuan, R., Chai, Y., Tang, M., Cao, S., Chen, S. (2007). Amperometric third-generation hydrogen peroxide biosensor based on immobilization of Hb on gold nanoparticles/ cysteine/poly(p-aminobenzene sulfonic acid)-modified platinum disk electrode. Col Surf A: Physicochem Eng Asp. 295: 223-227.spa
dcterms.referencesHan, D., Yan, Y., Wang, J., Zhao, M., Duan, X., Kong, L., Wu, H., Cheng, W., Min, X., Ding, S. (2019). An enzyme-free electrochemiluminesce aptasensor for the rapid detection of Staphylococcus aureus by the quenching effect of MoS2-PtNPs-vancomycin to S2O8 2−/O2 system. Sensors Act. B: Chem. 288: 586-593.spa
dcterms.referencesHSI, M. (2014). Staphylococcus aureus can Produce Catalase Enzyme when React with Human Wbcs as a Source of H2O2 Productions in Human Plasma or Serum in the Laboratory. J Med Microbiol & Diag. 3: 3-4.spa
dcterms.referencesLazcka, O., Campo, F. J. Del, Muñoz, F. X. (2007). Pathogen detection: A perspective of traditional methods and biosensors. Bios Bioelect. 22: 1205-1217.spa
dcterms.referencesLiebana, S., Lermo, A., Campoy, S., Cortes, M., Alegret, S., Pividori, A. (2009). Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing. Bios Bioelect. 25: 510-513.spa
dcterms.referencesLiu, H., Li, H., Wu, T., Hao, T. (2017). Differences of Bactericidal Efficacy on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis of Slightly and Strongly Acidic Electrolyzed Water. Food and Biop Techn. 10: 155-164.spa
dcterms.referencesLin, Y., Chen, S., Chuang, Y., Lu, Y., Shen, T., Chang, C., Lin, C. (2008). Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7. Biosens Bioelect. 23: 1832-1837.spa
dcterms.referencesMajumdar, T., Chakraborty, R., Raychaudhuri, U. (2013). Rapid Electrochemical Quantification of Food Borne Pathogen Staphylococcus aureus Based on Hydrogen Peroxide Degradation by Catalase . J Electrochem Soc. 160: G75-G78.spa
dcterms.referencesMuraoka, T. & Wesley, I. (2011). Time of Entry of Salmonella and Campylobacter into the Turkey Brooder House. Food and Biop Techn. 4: 616-623.spa
dcterms.referencesNistor, C., Osvik, A., Davidsson, R., Rose, A., Wollenberger, U., Fiksdal, L. (2002). Detection of Escherichia coli in water by culture-based amperometric and luminometric methods. Wat Sci Techn. 45: 191-199.spa
dcterms.referencesNiu, X., Si, Q., Chen, Y., Luo, R., Wang, H. (2018). A sortase A-immobilized mesoporous hollow carbon sphere-based Biosensor for detection of gram-positive bacteria. J Elect Mat. 47: 4124-4135.spa
dcterms.referencesOrduz, A. E., Gutiérrez, J. A., Blanco, S. I., Castillo, J. J. (2019). Amperometric detection of triclosan with screen-printed carbon nanotube electrodes modified with Guinea Grass (Panicum maximum) peroxidase. Universit Scient. 24: 363-379.spa
dcterms.referencesPérez, F., Tryland, I., Mascini, M., Fiksdal, L. (2001). Rapid detection of Escherichia coli in water by a culture-based amperometric method. Anal Chim Acta, 427: 149-154.spa
dcterms.referencesRanjbar, S. & Shahrokhian, S. (2018). Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus. Bioelectrochemistry. 123: 70-76.spa
dcterms.referencesRen, J., Zhou, Y., Zhou, Y., Zhou, C., Li, Z., Lin, Q., Huang, X. (2015). A piezoelectric picroelectrode arrays system for real-time monitoring of bacterial contamination in fresh milk. Food and Biop Techn. 8: 228-237.spa
dcterms.referencesRodríguez, A., Pina, D. G., Yélamos, B., Castillo León, J. J., Zhadan, G. G., Villar, Shnyrov, V. L. (2002). Thermal stability of peroxidase from the African oil palm tree Elaeis guineensis. Europ J Biochem. 269: 2584-2590.spa
dcterms.referencesSetterington, E. B. & Alocilja, E. C. (2011). Rapid electrochemical detection of polyaniline-labeled Escherichia coli O157:H7. Bios Bioelect. 26: 2208-2214.spa
dcterms.referencesTan, F., Leung, P. H. M., Liu, Z. Bin, Zhang, Y., Xiao, L., Ye, W., Yang, M. (2011). A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane. Sens Actuat B: Chem. 159: 328-335.spa
dcterms.referencesUribe, P. A., Ortiz, C. C., Centeno, D. A., Castillo, J. J., Blanco, S. I., Gutiérrez, J. A. (2019). Self-assembled Pt screen printed electrodes with a novel peroxidase Panicum maximum and zinc oxide nanoparticles for H2O2 detection. Col Surf A: Physicochem Eng Asp. 561: 18-24.spa
dcterms.referencesVelusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C. (2010). An overview of foodborne pathogen detection: In the perspective of biosensors. Biotech Adv. 28: 232-254.spa
dcterms.referencesVillamizar, E. N., Ríos, C. A., Castillo, J. J. (2016). A hydrogen peroxide biosensor based on the immobilization of the highly stable royal palm tree peroxidase (Roystonea regia) with chitosan and glutaraldehyde on screen-printed graphene. J Mex Chem Soc. 60: 135-140.spa
dcterms.referencesWang, Y., Ye, Z., Ying, Y. (2012). New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors. 12: 3449-3471.spa
dcterms.referencesWei, X., Wang, Z., Xia, Y., Wu, S., Duan, N., Jia, F. (2014). Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Microchim Acta. 181: 967-974.spa
dcterms.referencesXu, L., Liang, W., Yang, X., Jia, N., Zuo, X., Liu, G. (2018). An ultrasensitive electrochemical biosensor for the detection of mecA gene in methicillin-resistant Staphylococcus aureus. Biosens. Bioelect. 99: 424-430.spa
dcterms.referencesXu, S. (2012). Electromechanical biosensors for pathogen detection. Microchim Acta. 178: 3-4.spa
dcterms.referencesYue, H., Zhou, Y., Wang, P., Wang, X., Wang, Z., Wang, L., Fu, Z. (2016). A facile label-free electrochemiluminescent biosensor for specific detection of Staphylococcus aureus utilizing the binding between immunoglobulin G and protein A. Talanta, 153: 401-406.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1019-
dc.subject.proposalPeroxidasas de pasto guineaspa
dc.subject.proposalGuinea grass peroxidaseeng
dc.subject.proposalStaphylococcus aureusspa
dc.subject.proposalStaphylococcus aureuseng
dc.subject.proposalDetección electroquímicaspa
dc.subject.proposalElectrochemical detectioneng
dc.subject.proposalElectrodos serigrafiadosspa
dc.subject.proposalScreenprinted electrodes.eng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume44spa
dc.relation.citationstartpage835spa
dc.relation.citationendpage844spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue172spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
16. Rapid electrochemical detection.pdfCiencias químicas1.13 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons