Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1241 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMesa Sánchez, Oscar J.-
dc.contributor.authorRojo Hernández, Julián D.-
dc.date.accessioned2021-12-10T08:46:04Z-
dc.date.available2021-12-10T08:46:04Z-
dc.date.issued2020-09-29-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1241-
dc.description.abstractLa precipitación media multianual en las llanuras de la costa Pacífica colombiana varía entre los 8.000 y los 13.000 mm. El promedio anual en Puerto López (Cauca) (77°14’56,3”O, 2°50’43,0”N) es de 13.159 mm (1960-2018), probablemente el más alto del planeta. Tal cantidad de precipitación también implica el establecimiento de una fuente de calor diabática por condensación, la cual, a su vez, es responsable de la generación de la circulación atmosférica sobre el norte de Suramérica y Mesoamérica entre mediados de marzo y el fin de noviembre. En el presente trabajo se aplicó un modelo simple de circulación inducida por una fuente de calor diabática para estudiar la circulación general de la atmósfera alrededor de Colombia. Los resultados indicaron que la mencionada fuente de calor produce por sí misma fuertes vientos del oeste como respuesta a la propagación de media onda de Rossby sobre Mesoamérica y el Pacífico Este. Hacia el este de la fuente de calor, una onda Kelvin es responsable de los vientos del este que viajan desde el océano Atlántico tropical hacia Colombia. Ambas ondas, la planetaria y la Kelvin, dominan las trayectorias de flujo de los campos de vientos a bajo y alto nivel en la tropósfera sobre Colombia y su vecindario. Las observaciones documentadas sobre la circulación general de la atmósfera en el norte de Suramérica y Mesoamérica son suficientemente sólidas para respaldar la afirmación de que un conjunto de ondas inducidas por una fuente de calor y atrapadas en el ecuador explican la circulación general de la atmósfera sobre Colombia y su vecindario.spa
dc.description.abstractThe average annual precipitation in the Pacific coast of Colombia ranges from 8,000 to 13,000 mm. The annual average (1960-2018) in Puerto López (Cauca) rain gauge (77°14’56.3”W, 2°50’43.0”N) is 13.159 mm making it, probably, the rainiest place on the Earth. Such a large amount of precipitation also means a sizeable diabatic heating source over western Colombia, which is responsible for driving the circulation in northern South America and Mesoamerica from mid-March to the end of November. We applied a simple conceptual model to study the heat-induced circulation. Our results indicated that the heating source over western Colombia produces a steady, low-level westerly inflow as a result of a half planetary wave propagating over Mesoamerica and the far eastern Pacific that generates two cyclonical flows. On the east side of the heating source, a Kelvin wave generates a low-level easterly flow from the tropical Atlantic Ocean and the Northern Amazon and Orinoco basins in a Walker-type circulation. This Rossby and Kelvin patterns create information pathways, which, in their turn, dominate the low- and upper-level wind fields. Documented observations about the atmosphere’s general circulation over northern South America and Mesoamérica are consistent enough to support the assertion that a set of waves trapped in the tropics induced by a heating source explains the circulation over Colombia and its surroundings.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleOn the general circulation of the atmosphere around Colombiaspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesAdler, R., Gu, G., Huffman, G. (2011). Estimating climatological bias errors for the global precipitation climatology project GPCP. Journal of Apply Meteorology and Climatology. 51 (1): 84-99.spa
dcterms.referencesÁlvarez‐Villa, O. D., Vélez, J. I., Poveda, G. (2011). Improved long‐term mean annual rainfall fields for Colombia. International Journal of Climatology. 31 (14): 2194-2212.spa
dcterms.referencesAmador, J. A., Alfaro, E. J., Lizano, O. G., Magaña, V. O. (2006). Atmospheric forcing of the eastern tropical Pacific: A review. Progress in Oceanography. 69 (2): 101-142.spa
dcterms.referencesAmador, J. A. & Magana, V. (1999). Dynamics of the low level jet over the Caribbean Sea. In Preprints, Third Conference on Hurricanes and Tropical Meteorology.spa
dcterms.referencesAmador, J. A. (2008). The intra‐Americas sea low‐level jet. Annals of the New York Academy of Sciences. 1146 (1): 153-188.spa
dcterms.referencesArias, P. A., Martínez, J. A., Vieira, S. C. (2015). Moisture sources to the 2010-2012 anomalous wet season in northern South America. Climate Dynamics. 45 (9-10): 2861-2884.spa
dcterms.referencesArnett, A. B. & Steadman, C. R. (1970). Low-level wind flow over eastern Panama and northwestern Colombia. Technical report, ESSA Technical Memorandum ERLTM-ARL 26, U.S. Department of Commerce, Environmental Science Services Administration Research Laboratories, Air Resources Lab. Silver Spring. Mryland. 73 pp, 1970.spa
dcterms.referencesChan, S. C. & Nigam, S. (2009). Residual diagnosis of diabatic heating from ERA-40 and NCEP reanalyses: Intercomparisons with TRMM. Journal of climate. 22 (2): 414-428.spa
dcterms.referencesChelton, D. B., Freilich, M. H., Esbensen, S. K. (2000). Satellite observations of the wind jets off the Pacific coast of Central America. Part I: Case studies and statistical characteristics. Monthly Weather Review. 128 (7): 1993-2018spa
dcterms.referencesCook, K. H. & Vizy, E. K. (2010). Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation. Journal of Climate. 23 (6): 1477-1494.spa
dcterms.referencesCruz, C. (2017). Efectos de la variabilidad de la estructura dinámica y termodinámica del calentamiento atmosférico en la climatología de Colombia. Tesis de Maestría en Ingeniería- Recursos Hidráulicos. Facultad de Minas. Universidad Nacional de Colombia. Medellínspa
dcterms.referencesDurán-Quesada, A. M., Reboita, M., Gimeno, L. (2012). Precipitation in tropical America and the associated sources of moisture: a short review. Hydrological Sciences Journal. 57 (4): 612-624.spa
dcterms.referencesEslava, J. A. (1993). Climatología y diversidad climática de Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 18 (71): 507-538.spa
dcterms.referencesGill, A. E. & Clarke, A. J. (1974). Wind-induced upwelling, coastal currents and sea-level changes. Deep-Sea Research and Oceanographic Abstracts. 21 (5): 325-345.spa
dcterms.referencesGill, A. (1980). Some simple solutions for heat‐induced tropical circulation. Quarterly Journal of the Royal Meteorological Society. 106 (449): 447-462.spa
dcterms.referencesHolton, J. R. & Hakim, G. J. (2012). An introduction to dynamic meteorology. 245 (Vol. 88). Academic Press. p. 507.spa
dcterms.referencesKessler, W. S. & Gourdeau, L. (2006). Wind‐driven zonal jets in the South Pacific Ocean. Geophysical Research Letters. 33 (3): L03608. Doi:10.1029/2005GL025084.spa
dcterms.referencesLópez, M. E. (1966). Cloud seeding trials in the rainy belt of western Colombia. Water Resources Research. 2 (4): 811-823.spa
dcterms.referencesMagaña, V., Amador, J. A., Medina, S. (1999). The midsummer drought over Mexico and Central America. Journal of Climate. 12 (6): 1577-1588.spa
dcterms.referencesMakarieva, A. M. & Gorshkov, V. G. (2006). Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences Discussions. 3 (4): 2621-2673.spa
dcterms.referencesMakarieva, A. M. & Gorshkov, V. G. (2010). The biotic pump: Condensation, atmospheric dynamics and climate. International Journal of Water. 5 (4): 365-385.spa
dcterms.referencesMapes, B. E., Warner, T. T., Xu, M. (2003). Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Monthly Weather Review. 131 (5): 830-844.spa
dcterms.referencesMatsuno, T. (1966). Quasi-geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan. Ser. II. 44 (1): 25-43.spa
dcterms.referencesMejía, J. F. & Poveda, G. (2005). Ambientes atmosféricos de sistemas convectivos de meso-escala sobre Colombia durante 1998 según la misión TRMM y el re-analysis NCEP/NCAR. Revista de La Academia Colombiana de Ciencias. 29: 495-514.spa
dcterms.referencesMesa, O. J., Poveda, G., Carvajal, L. F. (1997) Introducción al clima de Colombia. Universidad Nacional de Colombia, 1997. p. 390.spa
dcterms.referencesMestas-Nuñez, A. M., Enfield, D. B., Zhang, C. (2007). Water vapor fluxes over the Intra-Americas Sea: seasonal and interannual variability and associations with rainfall. Journal of Climate. 20 (9): 1910-1922.spa
dcterms.referencesNieuwolt, S. (1977). Tropical climatology. John Wiley & Sons, Inc., New York. 352 p.spa
dcterms.referencesPabón-Caicedo, J. D., Eslava-Ramírez, J. A., Gómez-Torres, R. E. (2001) Generalidades de la distribución espacial y temporal de la temperatura del aire y de la precipitación en Colombia. Meteorología Colombiana. 4: 47-59.spa
dcterms.referencesPoveda-Jaramillo, G. (1998). Retroalimentación dinámica entre el fenómeno el niño-oscilación del sur y la hidrología de Colombia (Doctoral dissertation, Universidad Nacional de Colombia, Sede Medellín).spa
dcterms.referencesPoveda, G. & Mesa, O. J. (1997). Feedbacks between Hydrological Processes in Tropical South America and Large-Scale Ocean–Atmospheric Phenomena. Journal of Climate. 10 (10): 2690-2702.spa
dcterms.referencesPoveda, G. & Mesa, O. (1999). La corriente de chorro superficial del Oeste (“Del Chocó”) y otras dos corrientes de chorro en Colombia: Climatología y variabilidad durante las fases del ENSO. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 23 (89): 517-528.spa
dcterms.referencesPoveda, G. & Mesa, O. J. (2000). On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean‐land‐atmosphere interaction by a low‐level jet. Geophysical Research Letters. 27 (11): 1675-1678.spa
dcterms.referencesPoveda, G., Mesa, O., Agudelo, P., Álvarez, J., Arias, P., Moreno, H., et al. (2002). Influencia de ENSO, oscilación Madden-Julián, ondas del Este, huracanes y fases de la Luna en el ciclo diurno de la precipitación en los Andes Tropicales de Colombia. Meteorología Colombiana, 5: 3–12, 2002.spa
dcterms.referencesPoveda, G., Waylen, P., Pulwarty, R. S. (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology. 234 (1): 3-27.spa
dcterms.referencesPoveda, G., Jaramillo, L., Vallejo, L. F. (2014). Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resources Research. 50 (1): 98-118.spa
dcterms.referencesRomero-Centeno, R., Zavala-Hidalgo, J., Raga, G. B. (2007). Midsummer gap winds and lowlevel circulation over the eastern tropical Pacific. Journal of Climate. 20 (15): 3768-3784.spa
dcterms.referencesSakamoto, M. S., Ambrizzi, T., Poveda, G. (2011). Moisture sources and life cycle of convective systems over western Colombia. Advances in Meteorology. vol. 2011, Article ID 890759, 11 pages, 2011. https://doi.org/10.1155/2011/890759spa
dcterms.referencesSerra, Y. L., Kiladis, G. N., Hodges, K. I. (2010). Tracking and mean structure of easterly waves over the Intra-Americas Sea. Journal of Climate. 23 (18): 4823-4840.spa
dcterms.referencesSnow, J. W. (1975). The climates of northern South America. University of Wisconsin--Madison.spa
dcterms.referencesStensrud, D. J. (1996). Importance of low-level jets to climate: A review. Journal of Climate. 9 (8): 1698-1711.spa
dcterms.referencesTakahashi, K. & Martínez, A. G. (2017). The very strong coastal El Niño in 1925 in the far-eastern Pacific. Climate Dynamics. 52 (12): 7389-7415, 2019.spa
dcterms.referencesUrrea, V., Ochoa, A., Mesa, O. Seasonality of rain- fall in Colombia. Water Resources Research. 55 (5): 2019. Doi: 10.1029/2018WR023316spa
dcterms.referencesVelasco, I. & Fritsch, J. M. (1987). Mesoscale convective complexes in the Americas. Journal of Geophysical Research: Atmospheres. 92 (D8): 9591-9613.spa
dcterms.referencesWang, C. (2007). Variability of the Caribbean low-level jet and its relations to climate. Climate Dynamics. 29 (4): 411-422.spa
dcterms.referencesWang, C. & Lee, S. (2007). Atlantic warm pool, Caribbean low‐level jet, and their potential impact on Atlantic hurricanes. Geophysical Research Letters. 34, L02703, doi:10.1029/2006GL028579.spa
dcterms.referencesWang, C. (2002). Atlantic climate variability and its associated atmospheric circulation cells. Journal of Climate. 15 (13): 1516-1536.spa
dcterms.referencesWang, C. (2004). ENSO, Atlantic climate variability, and the Walker and Hadley circulations. In The Hadley circulation: present, past and future (pp. 173-202). Springer.spa
dcterms.referencesWebster, P. J. (1972). Response of the tropical atmosphere to local, steady forcing. Mon. Wea. Rev. 100 (7): 518-541.spa
dcterms.referencesWhyte, F. S., Taylor, M. A., Stephenson, T. S., Campbell, J. D. (2008). Features of the Caribbean low level jet. International Journal of Climatology. 28 (1): 119-128.spa
dcterms.referencesXie, S.-P., Xu, H., Kessler, W. S., Nonaka, M. (2005). Air–sea interaction over the eastern Pacific warm pool: Gap winds, thermocline dome, and atmospheric convection. Journal of Climate. 18 (1): 5-20.spa
dcterms.referencesXie, S. P., Xu, H., Saji, N. H., Wang, Y., Liu, W. T. (2006). Role of narrow mountains in large-scale organization of Asian monsoon convection. Journal of climate. 19 (14): 3420-3429.spa
dcterms.referencesZhang, K., Randel, W. J., Fu, R. (2017). Relationships between outgoing longwave radiation and diabatic heating in reanalyses. Climate Dynamics. 49 (7-8): 2911-2929.spa
dcterms.referencesZuluaga, M. D. & Poveda, G. (2004). Diagnostics of mesoscale convective systems over Colombia and the eastern tropical Pacific during 1998-2002. Avances en Recursos Hidráulicos. 11: 145-160.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.899-
dc.subject.proposalOndas ecuatorialesspa
dc.subject.proposalEquatorial waves;eng
dc.subject.proposalSur Américaspa
dc.subject.proposalSouth Americaeng
dc.subject.proposalMesoaméricaspa
dc.subject.proposalMesoamericaeng
dc.subject.proposalHidroclimatologíaspa
dc.subject.proposalHydroclimatologyeng
dc.subject.proposalColombiaspa
dc.subject.proposalColombiaeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume44spa
dc.relation.citationstartpage857spa
dc.relation.citationendpage875spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.coverage.countryColombia-
dc.relation.citationissue172spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
18. On the general circulation of the atmosphere around Colombia.pdfCiencias de la tierra2.3 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons