Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1256 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGordillo Delgado, Fernando-
dc.contributor.authorBotero Zuluaga, Mariana-
dc.date.accessioned2021-12-10T08:54:47Z-
dc.date.available2021-12-10T08:54:47Z-
dc.date.issued2020-12-07-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1256-
dc.description.abstractLa técnica fotoacústica permite evaluar el comportamiento de la razón de evolución de oxígeno de las plantas, el cual es un indicador del rendimiento fotosintético. En este estudio se monitoreó este parámetro y el crecimiento de un grupo de plantas de banano Gros Michel (Musa AAA), infectadas con Fusarium oxysporum f.sp. cubense, patógeno causante de la marchitez vascular, una enfermedad destructiva que amenaza la sostenibilidad de los cultivares sensibles a ella en las regiones productoras. La infección efectiva de las plantas y el progreso de la marchitez comúnmente se evalúan a partir de la manifestación de los primeros síntomas externos de clorosis en las hojas bajeras, a los que se asigna un valor cuantitativo según su gravedad. Aunque en el análisis de la razón de evolución de oxígeno y del crecimiento no se encontraron diferencias estadísticas significativas entre las plantas infectadas con Fusarium oxysporum f.sp. cubense y las plantas sanas, se demostró que esta técnica permite incluir caracteres fenotípicos relacionados con la actividad fotosintética en la caracterización de los cultivos. Los resultados en cuanto a la afectación de la enfermedad se pueden asociar con las condiciones de cultivo en invernadero y con la etapa asintomática de la enfermedad en la que se hizo la observación.spa
dc.description.abstractThe photoacoustic technique allows evaluating the behavior of the oxygen evolution ratio of plants, which is an indicator of photosynthetic performance. In this study, we monitored this parameter and the growth of a group of Gros Michel banana plants (Musa AAA) infected with Fusarium oxysporum f.sp. cubense. This pathogen causes vascular wilt, a destructive disease that threatens the sustainability of susceptible cultivars in producing regions. The effective infection of plants and the progress of wilt are usually evaluated from the moment of the first external symptoms of chlorosis in the lower leaves to which a quantitative value is assigned according to their severity. Although no significant statistical differences between Fusarium oxysporum f.sp. cubense infected plants and healthy plants were evident in the oxygen evolution ratio and growth analyses, we showed that this technique allows including phenotypic characteristics related to photosynthetic activity in the characterization of crops. The results regarding the disease can be associated with greenhouse growing and the asymptomatic stage in which plants were observed.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleMonitoreo fotoacústico de plantas Musa acuminata (Musaceae) infectadas con el hongo Fusarium oxysporum (Nectriaceae)spa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesAristizábal, M. (2008). Evaluación del crecimiento y desarrollo foliar del plátano hondureño enano (Musa AAB) en una región cafetera colombiana. Agron, 16 (2): 23-30.spa
dcterms.referencesAshraf, M. H. P. J. C., Harris, P. J. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica. 51 (2): 163-190. Doi: https://doi.org/10.1007/s11099-013-0021-6spa
dcterms.referencesBarja, P. R., Mansanares, A. M., Da Silva, E. C., Magalhães, A. C. N., Alves, P. L. C. A. (2001). Photosynthesis in eucalyptus studied by the Open Photoacoustic technique: Effects of irradiance and temperature. Acoust Phys. 47 (1): 16-21. Doi: 10.1134/1.1340073spa
dcterms.referencesCayón-Salinas, D. G. (2001). Evolución de la fotosíntesis, transpiración y clorofila durante el desarrollo de la hoja de plátano (Musa AAB Simmonds). Infomusa (FRA). 12 (15): 10.spa
dcterms.referencesDe Sain, M. & Rep, M. (2015). The role of pathogen-secreted proteins in fungal vascular wilt diseases. Int J Mol Sci. 16 (10): 23970-23993. Doi: 10.3390/ijms161023970spa
dcterms.referencesDita, M., Barquero, M., Heck, D., Mizubuti, E. S., Staver, C. P. (2018). Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Front Plant Sci. 9: 1468. Doi: 10.3389/fpls.2018.01468spa
dcterms.referencesDong, X., Xiong, Y., Ling, N., Shen, Q., Guo, S. (2014). Fusaric acid accelerates the senescence of leaf in banana when infected by Fusarium. World J Microbiol Biotechnol. 30 (4): 1399-408. Doi: 10.1007/s11274-013-1564-1spa
dcterms.referencesDong, X., Wang, M., Ling, N., Shen, Q., Guo, S. (2016). Potential role of photosynthesis-related factors in banana metabolism and defense against Fusarium oxysporum f. sp. cubense. Environ Exp Bot. 129: 4-12. Doi: 10.1016/j.envexpbot.2016.01.005spa
dcterms.referencesDucruet, J. M., Peeva, V., Havaux, M. (2007). Chlorophyll thermofluorescence and thermoluminescence as complementary tools for the study of temperature stress in plants. Photosynthesis Research. 93 (1-3): 159-171. Doi: 10.1007/s11120-007-9132-xspa
dcterms.referencesGhag, S. B., Shekhawat, U. K., Ganapathi, T. R. (2015). Fusarium wilt of banana: biology, epidemiology and management. Int J Pest Manag. 61 (3): 250-63. Doi: 10.1080/09670874. 2015.1043972spa
dcterms.referencesGordillo-Delgado, F., Marín, E., Calderón, A. (2016). Effect of Azospirillum brasilense and Burkholderia unamae Bacteria on Maize Photosynthetic Activity Evaluated Using the Photoacoustic Technique. International Journal of Thermophysics. 37 (9): 92. Doi: 10.1007/ s10765-016-2101-xspa
dcterms.referencesGordillo-Delgado, F., Zuluaga-Acosta, J., Marín-Gallego, B. J. (2019). Inoculación de nanopartículas de TiO2-Ag en semillas de espinaca. Informador Técnico. 83: 90-99. 10.23850/22565035.1659spa
dcterms.referencesGordon, T. R. (2017). Fusarium oxysporum and the Fusarium wilt syndrome. Annu Rev phytopathol. 55: 23-39. Doi: 10.1146/annurev-phyto-080615-095919spa
dcterms.referencesHan, T., Vogelmann, T. C. Nishio, J. (1999). A photoacoustic spectrometer for measuring heat dissipation and oxygen quantum yield at the microscopic level within leaf tissues. J. Photochem. Photobiol. B, Biol. 48 (2-3): 158-165. Doi: 10.1016/S1011-1344(99)00042-1spa
dcterms.referencesHerbert, S. K., Han, T., Vogelmann, T. C. (2000). New applications of photoacoustics to the study of photosynthesis. Photosynth Res. 66 (1-2): 13-31. Doi: 10.1023/A:1010788504886spa
dcterms.referencesHerbert, S. K., Biel, K. Y., Vogelmann, T. C. (2006). A photoacoustic method for rapid assessment of temperature effects on photosynthesis. Photosynth res. 87 (3): 287-294. Doi: 10.1007/ s11120-005-9009-9spa
dcterms.referencesHou, H. J., Sakmar, T. P. (2010). Methodology of pulsed photoacoustics and its application to probe photosystems and receptors. Sensors. 10 (6): 5642-5667. Doi: 10.3390/s100605642spa
dcterms.referencesLiu, S., Li, J., Zhang, Y., Liu, N., Viljoen, A., Mostert, D., Sheng, O. (2020). Fusaric acid instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR4. New Phytol. 225 (2): 913-929. Doi: 10.1111/nph.16193spa
dcterms.referencesLorenzini, G., Guidi, L., Nali, C., Ciompi, S., Soldatini, G. F. (1997). Photosynthetic response of tomato plants to vascular wilt diseases. Plant Sci. 124 (2): 143-152. Doi: 10.1016/S0168- 9452(97)04600-1spa
dcterms.referencesJärvi, S., Gollan, P. J., Aro, E. M. (2013). Understanding the roles of the thylakoid lumen in photosynthesis regulation. Frontiers in Plant Science. 4: 434. Doi: 10.3389/fpls.2013.00434spa
dcterms.referencesMadroñero, L. J., Corredor-Rozo, Z. L., Escobar-Pérez, J., Velandia-Romero, M. L. (2019). Next generation sequencing and proteomics in plant virology: how is Colombia doing? Acta Biológica Colombiana. 24 (3): 423-438. Doi: 0.15446/abc.v24n3.79486spa
dcterms.referencesMalkin, S. & Canaani, O. (1994). The use and characteristics of the photoacoustic method in the study of photosynthesis. Annual review of plant mol biol. 45 (1): 493-526.spa
dcterms.referencesMarín-Ortiz J. C., Gutiérrez-Toro N., Botero-Fernández V., Hoyos-Carvajal L.M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences. 27 (1): 88-99. Doi: 10.1016/j.sjbs.2019.05.007spa
dcterms.referencesMoreno, S. G., Vela, H. P., Álvarez, M. O. S. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica. 27 (4): 119-129.spa
dcterms.referencesPloetz, R. C., Haynes, J. L., Vázquez, A. (1999). Responses of new banana accessions in South Florida to Panama disease. Crop Prot. 18 (7): 445-449. Doi: 10.1016/S0261-2194(99)00043-5spa
dcterms.referencesPshibytko, N. L., Zenevich, L. A., Kabashnikova, L. F. (2006). Changes in the photosynthetic apparatus during Fusarium wilt of tomato. Russ J Plant Physiol. 53 (1): 25-31. Doi: 10.1134/ S1021443706010031spa
dcterms.referencesRai, A. K., Mathur, D., Singh, J. P. (2001). Photoacoustic Spectroscopy, a Nondestructive Method for Sensitive Analysis of Disease in Plants. Instrum Sci Technol. 29 (5): 355-366. Doi: 10.1081/ CI-100107228spa
dcterms.referencesRai, A. K., Mathur, D., Singh, J. P. (2001). Photoacoustic Spectroscopy, a Nondestructive Method for Sensitive Analysis of Disease in Plants. Instrum Sci Technol. 29 (5): 355-366. Doi: 10.1081/ CI-100107228spa
dcterms.referencesSingh, V. K., Singh, H. B., Upadhyay, R. S. (2017). Role of fusaric acid in the development of ‘Fusarium wilt’symptoms in tomato: Physiological, biochemical and proteomic perspectives. Plant physiol bioch. 118: 320-32. Doi: 10.1016/j.plaphy.2017.06.028spa
dcterms.referencesVargas-Luna, M., Madueño, L., Gutiérrez-Juárez, G., Bernal-Alvarado, J., Sosa, M., González- Solıs, J. L., Campos, P. (2003). Photorespiration and temperature dependence of oxygen evolution in tomato plants monitored by open photoacoustic cell technique. Rev Sci Instrum. 74 (1): 706-708. Doi: 10.1063/1.1517753spa
dcterms.referencesVargas-Luna, M., Madueño, L., Gutiérrez-Juárez, G., Bernal-Alvarado, J., Sosa, M., González- Solıs, J. L., Campos, P. (2003). Photorespiration and temperature dependence of oxygen evolution in tomato plants monitored by open photoacoustic cell technique. Rev Sci Instrum. 74 (1): 706-708. Doi: 10.1063/1.1517753spa
dcterms.referencesVeljović-Jovanović, S., Vidović, M., Morina, F., Prokić, L., Todorović, D. M. (2016). Comparison of photoacoustic signals in photosynthetic and nonphotosynthetic leaf tissues of variegated Pelargonium zonale. Int J Thermophy. 37 (9): 91. Doi: 10.1007/s10765-016-2092-7spa
dcterms.referencesWu, H. S., Bao, W., Liu, D. Y., Ling, N., Ying, R. R., Raza, W., Shen, Q. R. (2008). Effect of fusaric acid on biomass and photosynthesis of watermelon seedlings leaves. Caryologia. 61 (3): 258-268. Doi: 10.1080/00087114.2008.10589638spa
dcterms.referencesYe, S. F., Yu, J. Q., Peng, Y. H., Zheng, J. H., Zou, L. Y. (2004). Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil. 263 (1): 143-150. Doi: 10.1023/B:PLSO.0000047721.78555.dcspa
dcterms.referencesZakhidov, E. A., Kokhkharov, A. M., Kuvondikov, V. O., Nematov, S. K., Saparbaev, A. A. (2012). Photoacoustic spectroscopy of thermal relaxation processes of solar energy in the photosynthetic apparatus of plants. Applied Solar Energy. 48 (1): 62-66. Doi: 10.3103/ S0003701X12010161spa
dcterms.referencesZakhidov, E. A., Kokhkharov, A. M., Kuvondikov, V. O., Nematov, S. K., Tazhibaev, I. I. (2019). A Low-Frequency Photoacoustic Spectrometer with an RGB Light-Emitting Diode for Evaluating Photosynthetic Activity in Plant Leaves. Acoust Phys. 65 (1): 90-95. Doi: 10.1134/S1063771019010172spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1227-
dc.subject.proposalBananospa
dc.subject.proposalBananaeng
dc.subject.proposalMarchitez por Fusariumspa
dc.subject.proposalFusarium wilteng
dc.subject.proposalRazón de evoluación de oxígenospa
dc.subject.proposalOxygen evolution rateeng
dc.subject.proposalFotosíntesisspa
dc.subject.proposalPhotosynthesiseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume44spa
dc.relation.citationstartpage1073spa
dc.relation.citationendpage1082spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue173spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
14. Monitoreo fotoacústico de plantas Musa acuminata.pdfCiencias Naturales648.08 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons