Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1259 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFlórez Montes, Ciliana-
dc.contributor.authorMosquera Martínez, Óscar M.-
dc.contributor.authorRojas González, Andrés F.-
dc.coverage.temporalColombia-
dc.date.accessioned2021-12-10T08:56:15Z-
dc.date.available2021-12-10T08:56:15Z-
dc.date.issued2020-12-07-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1259-
dc.description.abstractHoy en día el aprovechamiento de residuos agroindustriales representa una alternativa viable para la obtención de compuestos valiosos, lo que en el caso de las biorrefinerías representa una oportunidad para mejorar. En ese contexto el objetivo de este estudio fue determinar el contenido de flavonoides y la capacidad antioxidante de 30 subproductos del procesamiento de frutas en Colombia, con el fin de proponer un posible uso. La capacidad antioxidante de los extractos etanólicos de cada subproducto se analizó mediante las pruebas FRAP, RPAA y ORAC. Se encontró que las cáscaras de tomate de árbol y durazno, y el vástago del tomate de árbol mostraban un alto contenido de flavonoides, con valores superiores a 8.271,82 μg de quercetina por gramo de muestra seca. También se encontró que las cáscaras de mango (22.676,57 ± 759,71 μg ET1/g Mbs, 3.692,38 ± 92,67 μg EAG/g Mbs), guanábana (22.117,13 ± 754,94 μg ET1/g Mbs, 4.858,79 ± 156,71 μg EAG/g Mbs, 14.713,39 ± 757,95 μg ET2/g Mbs), uva (17.027,85 ± 765,11 μg ET1/g Mbs, 13.395,15 ± 659,31 μg ET2/g Mbs) y durazno (17.910,21 ± 1.424,33 μg ET2/g Mbs), y las semillas (4.316,46 ± 112,00 μg EAG/g Mbs, 20.093,32 ± 1.317,93 μg ET2/g Mbs) y el escobajo de la uva (3.552,26 ± 31,63 μg EAG/g Mbs) mostraron una alta capacidad antioxidante en las diferentes pruebas realizadas. Los resultados de este estudio demuestran que los subproductos de frutas tienen un uso potencial en la industria farmacéutica, alimentaria y cosmética por su contenido de flavonoides y su alta capacidad antioxidante.spa
dc.description.abstractCurrently, the use of agro-industrial waste represents a viable alternative for obtaining valuable compounds that, in the case of biorefineries, is an opportunity for improvement. In this context, the aim of our study was to determine the flavonoid content and the antioxidant capacity of 30 byproducts from fruit processing in Colombia and propose possible applications. We analyzed the antioxidant capacity of the ethanolic extracts from each byproduct using the ferric reducing antioxidant power (FRAP) and the reducing power of antioxidant activity (RPAA) assays, as well as the oxygen radical absorbance capacity (ORAC) test. We found that tree tomato peels and stem and peach peels had a high flavonoid content, with values greater than 8,271.82 ± 702.70 μg quercetin per gram of dry sample. We also found that mango (22,676.57 ± 759.71 μg TE1/g Sdb, 3,692.38 ± 92.67 μg GAE/g Sdb), soursop (22,117.13 ± 754.94 μg TE1/g Sdb, 4,858.79 ± 156.71 μg GAE/g Sdb, 14,713.39 ± 757.95 μg TE2/g Sdb), grape (17,027.85 ± 765.11 μg TE1/g Sdb, 13,395.15 ± 659.31 μg TE2/g Sdb), peach peels (17,910.21 ± 1,424.33 μg TE2/g Sdb) and seeds (4,316.46 ± 112.00 μg GAE/g Sdb, 20,093.32 ± 1,317.93 μg TE2/g Sdb), and grape stalk (3,552.26 ± 31.63 μg GAE/g Sdb) showed a high antioxidant capacity in the different tests performed. Our results demonstrate that fruit byproducts have potential use in the pharmaceutical, ood, and cosmetic industry due to heir flavonoids content and their high antioxidant capacity.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleProspective use of fruit byproducts in Colombia according to their antioxidant capacityspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAbhijit, S., Tripathi, S. J., Bhagya, V., Rao, S., Subramanyam, M. V., Devi, S. A. (2018). Antioxidant action of grape seed polyphenols and aerobic exercise in improving neuronal number in the hippocampus is associated with decrease in lipid peroxidation and hydrogen peroxide in adult and middle-aged rats. Experimental Gerontology. 101: 101-112. Doi: 10.1016/j.exger.2017.11.012spa
dcterms.referencesAbril, A. J. & Navarro, E. A. (2012). Etanol a partir de biomasa lignocelulósica. Andalucía, Spain: Aleta Ediciones. p. 102.spa
dcterms.referencesAguilar-Hernández, G., García-Magaña, M. L., Vivar-Vera, M. A., Sayago-Ayerdi, S. G., Sánchez-Burgos, J. A., Morales-Castro, J., Anaya-Esparza, L. M., Montalto, E. (2019). Optimization of ultrasound-assisted extraction of phenolic compounds from Annona muricate. By-Products and Pulp. Molecules. 904 (24): 1-15. Doi: 10.3390/molecules24050904spa
dcterms.referencesAinsworth, E.A. & Gillespie, K.M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature protocols. 2 (4): 875-877. Doi: 10.1038/nprot.2007.102spa
dcterms.referencesAjila, C. M., Naidu, K. A., Bhat, S. G., Prasada, U. J. S. (2007). Bioactive compounds and antioxidant potential of mango peel extract. Food Chemistry. 105: 982-988. Doi: 10.1016/j. foodchem.2007.04.052spa
dcterms.referencesAkomalafe, S. F. & Ajayi, O. B. (2015). A comparative study on antioxidant properties, proximate and mineral compositions of the peel and pulp of ripe Annona muricata (L.) fruit. International Food Research Journal. 22 (6): 2381-2388.spa
dcterms.referencesAlabri, T. H. A., Musalami, A. H. S. A., Hossain, M. A., Weli, A. M., Al-Riyami, Q. (2014). Comparative study of phytochemical screening, antioxidant and antimicrobial capacities of fresh and dry leaves crude plant extracts of Datura metel L. Journal of King Saud University – Science. 26: 237-243. Doi: 10.1016/j.jksus.2013.07.002spa
dcterms.referencesAquilani, C., Sirtori, F., Flores, M., Bozzi, R., Lebret, B., Pugliese, C. (2018). Effect of natural antioxidants from grape seed and chestnut in combination with hydroxytyrosol, as sodium nitrite substitutes in Cinta senese dry-fermented sausages. Meat Science. 145: 389-398. Doi: 10.1016/j.meatsci.2018.07.019spa
dcterms.referencesBallester, J. (2016). Hidrólisis de proteínas sarcoplásmicas y generación de péptidos bioactivos durante la elaboración de jamón curado. Master’s thesis of Science and Food Engineering, Valencia: Universitat Politécnica de Valencia.spa
dcterms.referencesBanerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A. F, Arora, A. (2018). A hydrocolloid based biorefinery approach to the valorization of mango peel waste. Food Hydrocolloids. 77: 142-151. Doi: 10.1016/j.foodhyd.2017.09.029spa
dcterms.referencesBenzie, I. F. F. & Devaki, M. (2018). The ferric reducing/antioxidant power (FRAP) assay for non‐enzymatic antioxidant capacity: concepts, procedures, limitations and applications. In R. Apak, E. Capanoglu, F. Shahidi (Ed.), Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications (pp. 77-106). New Jersey, United States: John Wiley & Sons Ltd. Doi: 10.1002/9781119135388spa
dcterms.referencesBosco, F., Casale, A., Gribaudo, G., Mollea, C., Malucelli, G. (2017). Nucleic acids from agroindustrial wastes: A green recovery method for fire retardant applications. Industrial Crops and Products. 108: 208-218. Doi: 10.1016/j.indcrop.2017.06.035spa
dcterms.referencesCardona, C. A., Orrego, C. E., Tamayo, J. A. (2012). ARCANO, una oportunidad para el desarrollo de la agroindustria en el departamento de Caldas. Manizales, Colombia: Universidad Nacional de Colombia, Sede Manizales. p. 139spa
dcterms.referencesCarullo, G., Badolato, M., Aiello, F. (2018). Bioavailability and biochemistry of quercetin and applications to health and diseases. In R. Roos, V.R. Preedy, S. Zidabi (Ed.), Polyphenols: Mechanisms of action in human health and disease (pp. 361-371). Amsterdam, Netherlands: Elsevier Inc. Doi: 10.1016/C2016-0-04277-8spa
dcterms.referencesChen, Z., Bertin, R., Froldi, G. (2015). EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chemistry. 138 (1): 414-20. Doi: 10.1016/j. foodchem.2012.11.001spa
dcterms.referencesDíaz, A. L. (2011). Biodegradación de residuos de frutas y vegetales provenientes de supermercados usando la técnica de aireación forzada. Kuxulkab - Revista de divulgación. 17 (33): 4-7. Doi: 10.19136/kuxulkab.a17n33.355spa
dcterms.referencesDiep, T., Pook, C., Yoo, M. (2020). Phenolic and Anthocyanin Compounds and Antioxidant Activity of Tamarillo (Solanum betaceum Cav.). Antioxidants. 9 (2): 1-20. Doi: 10.3390/antiox9020169spa
dcterms.referencesFerreyra, S. G., Antoniolli, A., Borrini, R., Fontana, A. (2020). Bioactive compounds and total antioxidant capacity of cane residues from different grape varieties. Journal of the Science of Food and Agriculture. 100 (1): 376-383. Doi: 10.1002/jsfa.10065spa
dcterms.referencesGhosh, S., Kumar, J., Kumar, A. (2019). Comparative evaluation of in vitro antioxidant activities and high‑performance liquid chromatography fingerprinting of fruit peels collected from food processing industry wastes. Pharmacognosy Research. 11 (4): 346-351.spa
dcterms.referencesGrupta, D. (2015). Methods for determination of antioxidant capacity: a review. International Journal of Pharmaceutical Sciences and Research. 6 (2): 546-566. Doi: 10.13040/IJPSR. 0975-8232.6(2).546-66spa
dcterms.referencesHelkar, P. B., Sahoo, A. K., Patil, N. J. (2016). Review: Food industry by-products used as a functional food ingredients. International Journal of Waste Resources. 6 (3):1-6. Doi: 10.4172/2252-5211.1000248spa
dcterms.referencesKim, D. O., Jeong, S. W., Lee, C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry. 81 (3): 321-6. Doi: 10.1016/S0308-8146 (02)00423-5spa
dcterms.referencesKiss, A. A., Lange, J. P., Schuur, B., Brilman, D. W. F., van der Ham, A. G. J., Kersten, S. R. A. (2016). Separation technology–Making a difference in biorefineries. Biomass and Bioenergy. 95: 296-309. Doi: 10.1016/j.biombioe.2016.05.021spa
dcterms.referencesKumar, K., Yadav, A. N., Kumar, V., Vyas, P., Dhaliwal, S. (2017). Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresources and Bioprocessing. 4 (18): 1-14. Doi: 10.1186/s40643-017-0148-6spa
dcterms.referencesLesjak, M., Beara, I., Simin, N., Pintac, D., Majkic, T., Bekvalac, K., Orcic, D., Mimica-Dukic, N. (2018). Antioxidant and anti-inflammatory activities of quercetin and its derivatives. Journal of Functional Foods. 40: 68-75. Doi: 10.1016/j.jff.2017.10.047spa
dcterms.referencesLi, Y., Yao, J., Han, C., Yang, J., Chaudhry, M. T., Wang, S., Liu, H., Yin, Y. (2016). Quercetin, inflammation and immunity. Nutrients. 167 (8): 1-14. Doi: 10.3390/nu8030167spa
dcterms.referencesLópez, A. (2017). Caracterización de compuestos bioactivos en productos y subproductos vegetales mediante técnicas cromatográficas acopladas a espectrometría de masa. Doctoral thesis of Chemistry, Granada: Universidad de Grandaspa
dcterms.referencesLucarini, M., Durazzo, A., Romani, A., Campo, M., Lombardi-Boccia, G., Cecchini, F. (2018). Bio-based compounds from grape seeds: A biorefinery approach. Molecules. 23 (8): 1-12. Doi: 10.3390/molecules23081888spa
dcterms.referencesMahato, N., Sinha, M., Sharma, K., Koteswararao, R., Cho, M.H. (2019). Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods. 8 (11): 1-81. Doi: 10.3390/foods8110523spa
dcterms.referencesMartínez, M. M. & Quintero, J. C. (2017). Estado actual de los desperdicios de frutas y verduras en Colombia. In 4to Congreso Internacional AmITIC 2017 (pp. 194-201). Popayán.spa
dcterms.referencesMosquera, O. M., González, L. M., Cortes, Y. J., Camargo, J. C. (2015). Caracterización fitoquímica, determinación del contenido de lignina y la actividad antioxidante de los culmos de Guadua angustifolia KUNTH. Revista Facultad de Ciencias Básicas – Universidad Militar Nueva Granada. 11 (2): 124-135. Doi: 10.18359/rfcb.1301spa
dcterms.referencesOu, B., Hampsch-woodill, M., Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry. 49: 4619-4626. Doi: 10.1021/jf010586ospa
dcterms.referencesPatel, R. V., Mistry, B. M., Shinde, S. K., Syed, R., Singh, V., Shin, H. S. (2018). Therapeutic potential of quercetin as a cardiovascular agent. European Journal of Medicinal Chemistry. 115: 889-904. Doi: 10.1016/j.ejmech.2018.06.053spa
dcterms.referencesPatiño, P. E. (2014). Biomasa residual vegetal: tecnologías de transformación y estado actual. Innovaciencia. 2 (1): 45-52.spa
dcterms.referencesPeñaranda, L. V., Montenegro, S. P., Giraldo, P. A. (2017). Aprovechamiento de residuos agroindustriales en Colombia. Revista de Investigación Agraria y Ambiental, 8 (2): 141-150. Doi: 10.22490/21456453.2040spa
dcterms.referencesPrior., R. L. (2015). Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits. Journal of Functional Foods. 18: 797-810. Doi: 10.1016/j.jff.2014.12.018spa
dcterms.referencesRohm, H., Brennan, C., Turner, C., Günther, E., Campbell, G., Hernando, I., Struck, S., Kantogiorgos, V. (2015). Adding value to fruit processing waste: innovative ways to incorporate fibers from berry pomace in baked and extruded cereal-based foods—A SUSFOOD Project. Foods. 4: 690-697. Doi: 10.3390/foods4040690spa
dcterms.referencesRuales, A. V. (2015). Evaluación del potencial energético y bioactivo de los residuos generados por la producción y transformación de la uva. (Tesis de Maestría). Departamento de Ingeniería Química, Universidad Nacional de Colombia, Sede Manizales, Manizales.spa
dcterms.referencesRuiz-Torralba, A., Guerra-Hernández, E. J., García-Villanova, B. (2018). Antioxidant capacity, polyphenol content and contribution to dietary intake of 52 fruits sold in Spain. CyTAJournal of Food. 16 (1): 1131-1138. Doi: 10.1080/19476337.2018.1517828spa
dcterms.referencesSaleem, M., Tanvir, M., Akhtar, M. F., Iqbal, M., Saleem, A. (2019). Antidiabetic Potential of Mangifera indica L. cv. Anwar Ratol Leaves: Medicinal Application of Food Wastes. Medicina. 353 (55): 1-9. Doi: 10.3390/medicina55070353spa
dcterms.referencesSchaich, K. M., Tian, X., Xie, J. (2015). Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. Journal of functional foods. 14: 111-125.spa
dcterms.referencesSingh, D. S., Siddiq, M., Greiby, I., Dolan, K. D. (2013). Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods. Food Chemistry. 141: 2649-2655. Doi: 10.1016/j.foodchem.2013.05.053spa
dcterms.referencesSuleria, H. A. R., Barrow, C. J., Dunshea, F. R. (2020). Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods. 9 (9): 1-26. Doi: 10.3390/foods9091206spa
dcterms.referencesTafur, R., Toro, J. C., González, H., García, R., Reyes, E., Bolaños, A., Méndez, A. (2006). Diagnóstico y análisis de los recursos para la fruticultura en Colombia. Cali: Ministerio de Agricultura y Desarrollo Rural. p. 88.spa
dcterms.referencesValenzuela, P. D. (2015). Evaluación de la actividad antioxidante y determinación del contenido de fenoles totales y flavonoides de hojas de diferentes genotipos de Ugni molinae turcz. Thesis of Pharmaceutical chemist, Santiago de Chile: Universidad de Chile.spa
dcterms.referencesVargas, Y. A. & Pérez, L. I. (2018). Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente. Revista Facultad de Ciencias Básicas. 14 (1): 1-14.spa
dcterms.referencesViganó, J., de Paula Assis, B. F., Náthia-Neves, G., dos Santos, P., A. Meireles, M. A., Carvalho, P., Martínez, J. (2020). Extraction of bioactive compounds from defatted passion fruit bagasse (Passiflora edulis sp.) applying pressurized liquids assisted by ultrasound. Ultrasonics – Sonochemistry. 64: 1-8. Doi: 10.1016/j.ultsonch.2020.104999spa
dcterms.referencesYadav, K., Kumar, R., Mandal, S., Saha, P., Mann, B. (2018). Evaluation of total phenol content and antioxidant properties of encapsulated grape seed extract in yoghurt. International Journal of Dairy Technology. 71 (1): 96-104. Doi: 10.1111/1471-0307.12464spa
dcterms.referencesZeinab, M. H., Osheba, A. S., Khallaf, M. F., Abdel, A. A. (2019). Assessment of grape seeds as a source of antioxidant compounds. AUJAS. 27 (1): 501-509.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1241-
dc.subject.proposalCapacidad antioxidantespa
dc.subject.proposalAntioxidant capacityeng
dc.subject.proposalBiorefineríaspa
dc.subject.proposalBiorefineryeng
dc.subject.proposalFlavonoidesspa
dc.subject.proposalFlavonoidseng
dc.subject.proposalEconomía verdespa
dc.subject.proposalGreen economyeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume44spa
dc.relation.citationstartpage1113spa
dc.relation.citationendpage1125spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue173spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
17. Prospective use of fruit byproducts in Colombia.pdfCiencias químicas760.51 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons