Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1274 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWandurraga, Paula C.-
dc.contributor.authorNavarro, Anamaria-
dc.contributor.authorLora-Clavijo, Fabio D.-
dc.date.accessioned2022-06-23T00:13:59Z-
dc.date.available2022-06-23T00:13:59Z-
dc.date.issued2021-03-26-
dc.identifier.issn0370-3908spa
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1274-
dc.description.abstractExisten observaciones que indican que el campo magnético en la atmósfera solar tiene twist, esto cumple un papel muy importante en diferentes fenómenos solares como la reconexión magnética, las fulguraciones solares, entre otros. Sin embargo, su influencia en este tipo de fenómenos aún no es clara. Con esa motivación, en este artículo se estudia, mediante varias simulaciones numéricas 3D, el efecto del twist del campo magnético en la propagación de ondas torsionales de Alfvén y magnetoacústicas a lo largo de la fotosfera y la cromosfera baja de un Sol con poca actividad. Con la finalidad de simular la dinámica de estas ondas magnetohidrodinámicas (MHD), se solucionaron numéricamente las ecuaciones linealizadas de la MHD ideal en tres dimensiones, asumiendo un Sol con poca actividad, el cual fue alterado con una perturbación inicial tipo twist en el campo de velocidades, para seis valores diferentes del parámetro de twist y tres magnitudes del campo magnético en equilibrio. Particularmente, se analizó la morfología 3D de las líneas de los campos de velocidad y magnético, y el perfil espacial de la componente transversal de estos campos, asociada con las ondas torsionales de Alfvén. Los resultados de las simulaciones numéricas, revelan la amplificación del campo magnético debido al parámetro de twist. Específicamente, se observó que esta cantidad aumenta cuando el parámetro de twist aumenta y es menor para grandes magnitudes del campo magnético en equilibrio. Además, se mostró que el valor máximo de la amplificación en función del twist exhibe un comportamiento exponencial. Finalmente, se observó que el vector de flujo de Poynting es mayor si el twist es mayor y se reduce para campos magnéticos iniciales más intensos.spa
dc.description.abstractObservations indicate that the magnetic field in the solar atmosphere is twisted, playing an important role in different solar phenomena, such as magnetic reconnection or solar flaring activity, among others. However its influence on these kind of phenomena remains unclear. Motivated by this, we study, through several 3D numerical simulations, the effect of the magnetic field twist on the propagation of torsional Alfv´ en and magneto-acoustic waves moving along the photosphere and the lower chromosphere in the quiet Sun. In order to simulate the dynamics of these magnetohydrodynamic (MHD) waves, we solve numerically the ideal 3D linearized MHD equations by assuming a quiet Sun, which is excited by an initial twist perturbation in the velocity vector field, for six different values of the twist parameter and three equilibrium magnetic field strengths. Particularly, we analyze the 3D morphology of the velocity and magnetic fields lines, and the spatial profiles of the transversal component of these fields associated with the torsional Alfv´én waves. The results of our numerical simulations reveal the magnetic field amplification due to the twist parameter. Specifically, we have observed that this quantity increases as the twist parameter increases and decreases for larger values of the equilibrium magnetic strength. Moreover, we show that the maximum of amplification as function of the twist has an exponential behavior. Finally, we notice that the Poynting vector flux is greater for larger values of the initial twist but is smaller for more intense equilibrium magnetic fields.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titlePropagación de ondas de Alfvén atmósfera solar estratificadaspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica.spa
dcterms.referencesAngelopoulos, V. (2008, December). The THEMIS Mission. , 141(1-4), 5-34. doi: 10.1007/s11214-008-9336-1spa
dcterms.referencesBareford, M. R., Hood, A. W., & Browning, P. K. (2013, February). Coronal heating by the partial relaxation of twisted loops., 50(), A40. doi: 10.1051/0004-6361/201219725spa
dcterms.referencesBi, Y., Jiang, Y., Yang, J., Xiang, Y., Cai, Y., & Liu, W. (2015, May). Partial Eruption of a Filament with Twisting Non-uniform Fields. , 805(1), 48. doi: 10.1088/0004-637X/805/1/48spa
dcterms.referencesBommier, V., Derouich, M., Landi Degl’Innocenti, E., Molodij, G., & Sahal-Br´échot, S. (2005, March). Interpretation of second solar spectrum observations of the Sr I 4607 line in a quiet region: Turbulent magnetic field strength determination. 432(1), 295-305. doi: 10.1051/0004-6361:20035773spa
dcterms.referencesCanou, A., Amari, T., Bommier, V., Schmieder, B., Aulanier, G., & Li, H. (2009, March). Evidence for a Pre-Eruptive Twisted Flux Rope Using the Themis Vector Magnetograph. , 693(1), L27-L30. doi: 10.1088/0004-637X/693/1/L27spa
dcterms.referencesChatterjee, P., & Fan, Y. (2013, November). Simulation of Homologous and Cannibalistic Coronal Mass Ejections produced by the Emergence of a Twisted Flux Rope into the Solar Corona. , 778(1), L8. doi: 10.1088/2041-8205/778/1/L8spa
dcterms.referencesDe Pontieu, B., Title, A. M., Lemen, J. R., Kushner, G. D., Akin, D. J., Allard, B., . . . Waltham, N. (2014, July). The Interface Region Imaging Spectrograph (IRIS). , 289(7), 2733-2779. doi: 10.1007/s11207-014-0485-yspa
dcterms.referencesEbrahimi, Z., Karami, K., & Soler, R. (2017, August). The Effect of a Twisted Magnetic Field on the Phase Mixing of the Kink Magnetohydrodynamic Waves in Coronal Loops. , 845(1), 86. doi: 10.3847/1538-4357/aa7f75spa
dcterms.referencesEvans, C. R., & Hawley, J. F. (1988, September). Simulation of Magnetohydrodynamic Flows: A Constrained Transport Model. , 332(), 659. doi: 10.1086/166684spa
dcterms.referencesGordovskyy, M., Browning, P. K., Kontar, E. P., & Bian, N. H. (2014, January). Particle acceleration and transport in reconnecting twisted loops in a stratified atmosphere. , 561(), A72. doi: 10.1051/0004-6361/201321715spa
dcterms.referencesHoeksema, J. T., Liu, Y., Hayashi, K., Sun, X., Schou, J., Couvidat, S., . . . Turmon, M. (2014, September). The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance. , 289(9), 3483-3530. doi: 10.1007/s11207-014-0516-8spa
dcterms.referencesHoward, R. A., Moses, J. D., Vourlidas, A., Newmark, J. S., Socker, D. G., Plunkett, S. P., . . . Carter, T. (2008, April). Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). , 136(1-4), 67-115. doi: 10.1007/s11214-008-9341-4spa
dcterms.referencesJain, R., Gascoyne, A., & Hindman, B. W. (2011, August). Interaction of p modes with a collection of thin magnetic tubes. , 415(2), 1276-1279. doi: 10.1111/j.1365-2966.2011.18778.xspa
dcterms.referencesKaiser, M. L., Kucera, T. A., Davila, J. M., St. Cyr, O. C., Guhathakurta, M., & Christian, E. (2008, April). The STEREO Mission: An Introduction. , 136(1-4), 5-16. doi: 10.1007/s11214-007-9277-0spa
dcterms.referencesKnizhnik, K. J., Linton, M. G., & DeVore, C. R. (2018, September). The Role of Twist in Kinked Flux Rope Emergence and Delta-spot Formation. , 864(1), 89. doi: 10.3847/1538-4357/aad68cspa
dcterms.referencesKohutova, P., Verwichte, E., & Froment, C. (2020, January). First direct observation of a torsional Alfv´ en oscillation at coronal heights. , 633(), L6. doi: 10.1051/0004-6361/201937144spa
dcterms.referencesKosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., . . . Golub, L. (2007, June). The Hinode (Solar-B) Mission: An Overview. , 243(1), 3-17. doi: 10.1007/s11207-007-9014-6spa
dcterms.referencesLiu, R., Kliem, B., Titov, V. S., Chen, J., Wang, Y., Wang, H., . . . Wiegelmann, T. (2016, February). Structure, Stability, and Evolution of Magnetic Flux Ropes from the Perspective of Magnetic Twist. , 818(2), 148. doi: 10.3847/0004-637X/818/2/148spa
dcterms.referencesLiu, Z., Xu, J., Gu, B.-Z., Wang, S., You, J.-Q., Shen, L.-X., . . . Zhang, B.-R. (2014, June). New vacuum solar telescope and observations with high resolution. Research in Astronomy and Astrophysics, 14(6), 705-718. doi: 10.1088/1674-4527/14/6/009spa
dcterms.referencesLora-Clavijo, F. D., Cruz-Osorio, A., & Guzmán, F. S. (2015, June). CAFE: A New Relativistic MHD Code. , 218(2), 24. doi: 10.1088/0067-0049/218/2/24spa
dcterms.referencesMariska, J. T. (1986, January). The quiet solar transition region. , 24(), 23-48. doi: 10.1146/annurev.aa.24.090186.000323spa
dcterms.referencesMurawski, K., Ballai, I., Srivastava, A. K., & Lee, D. (2013, December). Threedimensional numerical simulation of magnetohydrodynamic-gravity waves and vortices in the solar atmosphere. , 436(2), 1268-1277. doi: 10.1093/mnras/stt1653spa
dcterms.referencesMurawski, K., Chmielewski, P., Zaqarashvili, T. V., & Khomenko, E. (2016, July). Numerical simulations of magnetic Kelvin-Helmholtz instability at a twisted solar flux tube. , 459(3), 2566-2572. doi: 10.1093/mnras/stw703spa
dcterms.referencesMurawski, K., Solov’ev, A., & Kra´ skiewicz, J. (2015, July). A Numerical Model of MHD Waves in a 3D Twisted Solar Flux Tube., 290(7), 1909-1922. doi: 10.1007/s11207-015-0740-xspa
dcterms.referencesNavarro, A., Lora-Clavijo, F. D., & Gonz´ alez, G. A. (2017, July). Magnus: A New Resistive MHD Code with Heat Flow Terms., 844(1), 57. doi: 10.3847/1538-4357/aa7a13spa
dcterms.referencesNavarro, A., Lora-Clavijo, F. D., Murawski, K., & Poedts, S. (2021, January). Thermal conduction effects on formation of chromospheric solar tadpole-like jets. , 500(3), 3329-3334. doi: 10.1093/mnras/staa3402spa
dcterms.referencesNavarro, A., Murawski, K., W´ ojcik, D., & Lora-Clavijo, F. D. (2019, October). Numerical simulations of the emerging plasma blob into a solar coronal hole. , 489(2), 2769-2774. doi: 10.1093/mnras/stz2313spa
dcterms.referencesPesnell, W. D., Thompson, B. J., & Chamberlin, P. C. (2012, January). The Solar Dynamics Observatory (SDO). , 275(1-2), 3-15. doi: 10.1007/s11207-011-9841-3spa
dcterms.referencesPimentel, O. M., & Lora-Clavijo, F. D. (2019, December). On the linear and non-linear evolution of the relativistic MHD Kelvin-Helmholtz instability in a magnetically polarized fluid. , 490(3), 4183-4193. doi: 10.1093/mnras/stz2750spa
dcterms.referencesRaouafi, N. E. (2009, February). Observational Evidence for Coronal Twisted Flux Rope. , 691(2), L128-L132. doi: 10.1088/0004-637X/691/2/L128spa
dcterms.referencesSrivastava, A. K., Shetye, J., Murawski, K., Doyle, J. G., Stangalini, M., Scullion, E., . . . Dwivedi, B. N. (2017, March). High-frequency torsional Alfv´ en waves as an energy source for coronal heating. Scientific Reports, 7(), 43147. doi: 10.1038/srep43147spa
dcterms.referencesTerradas, J., Magyar, N., & Van Doorsselaere, T. (2018, January). Effect of Magnetic Twist on Nonlinear Transverse Kink Oscillations of Line-tied Magnetic Flux Tubes. , 853(1), 35. doi: 10.3847/1538-4357/aa9d0fspa
dcterms.referencesTiwari, S. K., Moore, R. L., De Pontieu, B., Tarbell, T. D., Panesar, N. K., Winebarger, A. R., & Sterling, A. C. (2018, December). Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations., 869(2), 147. doi: 10.3847/1538-4357/aaf1b8spa
dcterms.referencesWiegelmann, T., & Sakurai, T. (2012, September). Solar Force-free Magnetic Fields. Living Reviews in Solar Physics, 9(1), 5. doi: 10.12942/lrsp-2012-5spa
dcterms.referencesZaqarashvili, T. V., V¨ or¨ os, Z., & Zhelyazkov, I. (2014, January). Kelvin-Helmholtz instability of twisted magnetic flux tubes in the solar wind. , 561(), A62. doi: 10.1051/0004-6361/201322808spa
dcterms.referencesZhelyazkov, I. (2015, March). On Modeling the Kelvin-Helmholtz Instability in Solar Atmosphere. Journal of Astrophysics and Astronomy, 36(1), 233-254. doi: 10.1007/s12036-015-9332-215spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1245-
dc.subject.proposalMHDspa
dc.subject.proposalMHDeng
dc.subject.proposalatmósfera solarspa
dc.subject.proposalSolar Atmosphereeng
dc.subject.proposalMétodos Numéricosspa
dc.subject.proposalNumerical Methodseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume45spa
dc.relation.citationstartpage52spa
dc.relation.citationendpage66spa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.identifier.eissn2382-4980spa
dc.relation.citationissue174spa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
3 1245 LaTex.pdf1.7 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.