Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1291 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGómez- González, Sandra Marcela-
dc.contributor.authorCortés-Hernández, Héctor Fabio-
dc.contributor.authorCastellanos-Blanco, Nahury yamile-
dc.contributor.authorRodríguez-Pérez, Jonhy Roberto-
dc.date.accessioned2022-07-18T21:26:57Z-
dc.date.available2022-07-18T21:26:57Z-
dc.date.issued2021-03-26-
dc.identifier.issn0370-3908spa
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1291-
dc.description.abstractLas nitroanilinas son compuestos ampliamente utilizados en pesticidas químicos, derivados de colorantes azoicos, productos farmacéuticos y aditivos para combustibles, entre otros. El estudio y aplicación de las nitroanilinas ha sido importante desde una perspectiva comercial e industrial; sin embargo, se ha encontrado que la eliminación de derivados de nitroanilina en cuerpos de agua en bajas concentraciones genera una alta contaminación. En este sentido, es importante el estudio de técnicas y procesos alternativos para su degradación. En el presente estudio, propusimos un proceso para la degradación de derivados de orto- y metanitroanilina usando catálisis heterogénea con TiO2. Creamos un reactor prototipo a escala de laboratorio y evaluamos la cantidad de TiO2, el valor de pH, y la concentración de oxidante (H2O2) para ambas nitroanilinas y pudimos determinar la cinética de degradación, analizar la recuperación del catalizador y establecer las condiciones óptimas de degradación. Encontramos que la cantidad de peróxido y el valor de pH representan el mayor porcentaje de degradación. Finalmente, se obtuvo una mineralización de 93.5% y 97.6% para los isómeros orto- y meta-nitroanilina, respectivamente, con una reacción de orden pseudo-cero para la degradación de ambos compuestos basada en el mecanismo de Langmuir-Hinshelwood.spa
dc.description.abstractNitroanilines are compounds widely used in chemical pesticides, derived from azo dyes, pharmaceutical products, and fuel additives, among others. The study and application of nitroanilines have been important from a commercial and industrial perspective; however, it has been found that the elimination of nitroaniline derivatives in water bodies at low concentrations generates high contamination. In this sense, the study of alternative techniques and processes for their degradation is important. In the present study, we proposed a process for the degradation of ortho- and metanitroaniline derivatives using heterogeneous catalysis with TiO2. We created a laboratory-scale prototype reactor and evaluated the amount of TiO2, the pH value, and the concentration of oxidant (H2O2) for both nitroanilines and we were able to determine the degradation kinetics, analyze the catalyst recovery, and establish the optimal degradation conditions. We found that the amount of peroxide and pH value account for the highest percentage of degradation. Finally, we obtained the mineralization of 93.5% and 97.6% for the ortho- and meta-nitroaniline isomers, respectively, with a pseudo-zero-order reaction for the degradation of both compounds based on the Langmuir-Hinshelwood mechanism.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.titleFotocatálisis heterogénea para la degradación de orto- y metanitroanilinaspa
dc.titleHeterogeneous photocatalysis for ortho- and metanitroaniline degradationeng
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes,Profesores, Comunidad cientificaspa
dcterms.referencesAlalm, MG. & Tawfik, A. (2014). Solar Photocatalytic Degradation of Phenol in Aqueous Solutions Using Titanium Dioxide. World Academy of Science, Engineering and Technology, International Science Index 86, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering. 8 (2): 144-147. Doi: 10.5281/zenodo.1090934spa
dcterms.referencesAl-bayati, TM. (2014). Removal of Aniline and Nitro-Substituted Aniline from Wastewater by Particulate Nanoporous MCM-48. Particulate Science and Technology An International Journal. 32 (6): 616-623. Doi: 10.1080/02726351.2014.948973spa
dcterms.referencesAl-bayati TM. & Doyle, AM. (2013). Shape-Selective Adsorption of Substituted Aniline Pollutants from Wastewater. Adsorption Science & Technology. 31 (5): 459-468. Doi: 10.1260/0263-6174.31.5.459spa
dcterms.referencesAmritha, AS. & Manu, B. (2018). Degradation of nitroaromatic compounds: a novel approach using iron from laterite soil. Appl Water Sci. 8: 136. Doi: 10.1007/s13201-018-0778-7spa
dcterms.referencesAsuha, S., Zhou, X.G., Zhao, S. (2010) Adsorption of Methyl Orange and Cr(VI) on Mesoporous TiO2 Prepared by Hydrothermal Method. Journal of Hazardous Materials. 181: 204-210. Doi: 10.1016/j.jhazmat.2010.04.117spa
dcterms.referencesAyoub, H., Kassir, M., Raad, M., Bazzi, H., Hijazi, A. (2017). Effect of Dye Structure on the Photodegradation Kinetic Using TiO2 Nanoparticles. Journal of Materials Science and Chemical Engineering. 5: 31-45. Doi: 10.4236/msce.2017.56004spa
dcterms.referencesBlakey, DH., Maus, KL., Bell, R., Bayley, J., Douglas, GR., Nestmann, ER. (1994). Mutagenic activity of 3 industrial chemicals in a battery of in vitro and in vivo tests. Mutat Res-Gen Tox. 320 (4): 273-283. Doi: 10.1016/0165-1218(94)90080-9spa
dcterms.referencesDeng, Y. & Zhao R. (2015). Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr Pollution Rep. 1: 167-176. Doi: 10.1007/s40726-015-0015-zspa
dcterms.referencesDíaz, WD., Cortés, HF., Rodríguez, JA. (2017). Degradación fotocatalítica de la orto y metanitroanilina en un reactor cilíndrico – parabólico compuesto. Entre Ciencia e Ingeniería. 11(22): 95-100. Doi: 10.31908/19098367.3554spa
dcterms.referencesDong, Z., Le, X., Li, X., Zhang, W., Dong, C., Ma, J. (2014). Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2- nitroaniline. Appl Catal B. 158 (129): 129-135. Doi: 10.1016/j.apcatb.2014.04.015spa
dcterms.referencesGautam, S., Kamble, SP., Sawant, SB., Pangarkar, VG. (2005). Photocatalytic degradation of 4-nitroaniline using solar and artificial UV radiation. Chemical Engineering Journal. 110 (1-3):129-137. Doi: 10.1016/j.cej.2005.03.021spa
dcterms.referencesGnanaprakasam, A., Sivakumar, VM., Thirumarimurugan, M. (2015). Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review. Indian Journal of Materials Science. 2015: 1-16. Doi: 10.1155/2015/601827spa
dcterms.referencesHabibi, MH., Khaledisardashti, M., Montazerozohori, M. (2004). Photocatalytic Mineralisation of Aniline Derivatives in Aquatic Systems Using Semiconductor Oxides. Annali di Chimica. 94 (5-6): 421- 428. Doi: 10.1002/adic.200490051spa
dcterms.referencesHasani, M. & Emami F. (2008). Evaluation of feed-forward back propagation and radial basis function neural networks in simultaneous kinetic spectrophotometric determination of nitroaniline isomers. Talanta. 75: 116-126. Doi: 10.1016/j.talanta.2007.10.038spa
dcterms.referencesHernández, JM., García, LA., García, R., Cueto, A., Carmona, J. (2012). Estudio cinético de la fotodegradación del naranja de metilo en presencia de TiO2: efecto de la fuente de radiación U.V., concentración del azo-colorante y del catalizador. Av. cien. Ing. 3 (2): 25-34.spa
dcterms.referencesHuang, W. & Liu, R. (2011). Photocatalytic Degradation of p-Nitroaniline with Composite Photocatalyst H3P12W40/TiO2. Advanced Materials Research. 233-235: 967-970. Doi: 10.4028/www.scientific. net/AMR.233-235.967spa
dcterms.referencesLan, S., Liu, L., Li, R., Leng, Z., Gan, S. (2014). Hierarchical Hollow Structure ZnO: Synthesis, Characterization, and Highly Efficient Adsorption/Photocatalysis toward Congo Red. Industrial & Engineering Chemistry Research. 53 (8): 3131-3139. Doi: 10.1021/ie404053mspa
dcterms.referencesLi, K., Zheng, Z., Feng, J., Zhang, J., Luo, X., Zhao, G., Huang, X. (2008). Adsorption of p-nitroaniline from aqueous solutions onto activated carbon fiber prepared from cotton stalk. Journal of Hazardous Materials. 166 (2-3): 1180-1185. Doi: 10.1016/j.jhazmat.2008.12.035spa
dcterms.referencesMa, H., Wang, M., Pu, C., Zhang J., Zhao, S., Yao, S., Xiong, J.(2009). Transient and steady-state photolysis of p-nitroaniline in aqueous solution. Journal of Hazardous Materials. 165 (1-3): 867-873. Doi: 10.1016/j.jhazmat.2008.10.077spa
dcterms.referencesMei, X., Ding, Y., Wang, Y., Yang, Y., Xu, L., Wang, Y., Shen, W., Zhang, Z., Ma, M., Guo, Z., Xiao, Y., Yang, X., Zhou, B., Xu, K., Guo, W., Wang, C. (2020a). A novel membrane-aerated biofilter for the enhanced treatment of nitroaniline wastewater: Nitroaniline biodegradation performance and its influencing factors. Bioresource Technology. 307: 123241. Doi: 10.1016/j.biortech.2020.123241spa
dcterms.referencesMei, X., Wang, Y., Yang, Y., Xu, L., Wang, Y., Guo, Z., Shen, W., Zhang, Z., Ma, M., Ding, Y., Xiao, Y., Yang, X., Yin, C., Guo, W., Xu, K., Wang, C. (2020b). Enhanced treatment of nitroaniline-containing wastewater by a membrane-aerated biofilm reactor: Simultaneous nitroaniline degradation and nitrogen removal. Separation and Purification Technology. 248: 117078. Doi: 10.1016/j.seppur.2020.117078spa
dcterms.referencesMirkhani, V., Tangestaninejad, S., Moghadam, M., Habibi, MH., Vartooni, AR. (2009). Photodegradation of aromatic amines by Ag-TiO2 photocatalyst. Journal of the Iranian Chemical Society. 6: 800-807. Doi: 10.1007/BF03246172spa
dcterms.referencesNaseem, K., Begum, R., Farooqi, Z.H. (2017). Catalytic reduction of 2-nitroaniline: a review. Environ Sci Pollut Res. 24: 6446-6460. Doi: 10.1007/s11356-016-8317-2spa
dcterms.referencesPanunto, TW., Urbanczyk, Z., Johnson, R., Etter, CM. (1987). Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials. Journal of the American Chemical Society. 109 (25): 7786-7797. Doi: 10.1021/ja00259a030spa
dcterms.referencesSapawe, N., Jalil, AA., Triwahyono, S. (2013). Photodecolorization of methylene blue over EGZrO2/EGZnO/EGFe2O3/HY photocatalyst: effect of radical scavenger. Malaysian Journal of Fundamental and Applied Sciences. 9 (2): 67-73. Doi: 10.11113/mjfas.v9n2.85spa
dcterms.referencesSaupe, A. (1999). High-rate biodegradation of 3- and 4-nitroaniline. Chemosphere. 39 (13): 2325-2346. Doi: 10.1016/S0045-6535(99)00141-1spa
dcterms.referencesSeshadri, H., Chitra, S., Paramasivan, K., Sinha, PK. (2008). Photocatalytic degradation of liquid waste containing EDTA. Desalination. 232 (1-3): 139-144. Doi: 10.1016/j.desal.2007.12.013spa
dcterms.referencesSharma, S., Kumar, S., Arumugam, SM., Elumalai, S. (2020), Promising photocatalytic degradation of lignin over carbon quantum dots decorated TiO2 nanocomposite in aqueous condition. Applied Catalysis A: General. 602: 117730. Doi: 10.1016/j.apcata.2020.117730spa
dcterms.referencesSilambarasan, S. & Vangnai, A. (2016). Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites. Journal of Hazardous Materials. 302: 426-436. Doi: 10.1016/j. jhazmat.2015.10.010spa
dcterms.referencesSobana N., Swaminathan, M. (2007). The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Separation and Purification Technology. 56 (1): 101-107. Doi: 10.1016/j.seppur.2007.01.032spa
dcterms.referencesSun, JH., Sun, SP., Fan, MH., Guo, HQ., Qiao, LP., Sun, RX. (2007). A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. Journal of Hazardous Materials. 148 (1-2): 172-177. Doi: 10.1016/j.jhazmat.2007.02.022spa
dcterms.referencesSurolia, PK., Tayade, RJ., Jasra, RV. (2010). TiO2-Coated Cenospheres as Catalysts for Photocatalytic Degradation of Methylene Blue, p-Nitroaniline, n-Decane, and n-Tridecane under Solar Irradiation. Industrial & Engineering Chemistry Research. 49 (19): 8908-8919. Doi: 10.1021/ie100388mspa
dcterms.referencesTheurich, J., Lindner, M., Bahnemann, DW. (1996). Photocatalytic Degradation of 4-Chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions: A Kinetic and Mechanistic Study. Langmuir. 12 (26): 6368-6376. Doi: 10.1021/la960228tspa
dcterms.referencesWang, H., Jiang, H., Song, N., Liu, X., Jia, Q. (2014). Application of cloud point methodology to the determination of nitroanilines in natural water, Korean J. Chem. Eng. 31: 2261-2265. Doi: 10.1007/s11814-014-0182-4spa
dcterms.referencesWang, N., Zheng, T., Jiang, J., Wang, P. (2015). Cu(II)–Fe(II)–H2O2 oxidative removal of 3-nitroaniline in water under microwave irradiation. Chemical Engineering Journal. 260: 386-392. Doi: 10.1016/j.cej.2014.09.002spa
dcterms.referencesWang, Y., Zhang, YN., Zhao, G., Wu, M., Li, M., Li, D., Zhang, Y., Zhang, Y. (2013). Electrosorptive photocatalytic degradation of highly concentrated p-nitroaniline with TiO2 nanorod-clusters/carbon aerogel electrode under visible light. Separation and Purification Technology. 104: 229-237. Doi: 10.1016/j.seppur.2012.11.009spa
dcterms.referencesYang, B., Cheng, Z., Fan, M., Jia, J., Yuan, T., Shen, Z. (2018). Supercritical water oxidation of 2-, 3- and 4-nitroaniline: A study on nitrogen transformation mechanism. Chemosphere. 205:426-432. Doi: 10.1016/j.chemosphere.2018.04.029spa
dcterms.referencesZhang, Z., Xu, Y., Ma, X., Li, F., Liu, D., Chen, Z., Zhang, F., Dionysiou, DD. (2012). Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW). Journal of Hazardous Materials. 209-210: 271-277. Doi: 10.1016/j.jhazmat.2012.01.021spa
dcterms.referencesZheng, K., Zhang, TC., Lin, P., Han, YH., Li, HY., Ji, RJ., Zhang HY. (2015). 4-Nitroaniline Degradation by TiO2 Catalyst Doping with Manganese. Journal of Chemistry. 2015: 1-6. Doi: 10.1155/2015/382376spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1315-
dc.subject.proposal2-nitroanilinaspa
dc.subject.proposal2-nitroanilineeng
dc.subject.proposal3-nitroanilinaspa
dc.subject.proposal3-nitroanilineeng
dc.subject.proposalFotodegradaciónspa
dc.subject.proposalPhotodegradationeng
dc.subject.proposalTiO2spa
dc.subject.proposalTiO2eng
dc.subject.proposalPseudo orden cerospa
dc.subject.proposalPseudo-zero-order.eng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturalesspa
dc.relation.citationvolume45spa
dc.relation.citationstartpage300spa
dc.relation.citationendpage312spa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Fisicas y Naturalesspa
dc.identifier.eissn2382-4980spa
dc.relation.citationissue174spa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
19 1315 Fotocatálisis heterogénea.pdf2.34 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons