Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1845 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCardenas-Flechas, Leydi Julieta-
dc.contributor.authorMejía-Villagran, Claudia Patricia-
dc.contributor.authorRincon-Joya, Miryam-
dc.contributor.authorOlaya-Florez, Jhon Jairo-
dc.date.accessioned2022-10-18T22:09:57Z-
dc.date.available2022-10-18T22:09:57Z-
dc.date.issued2021-06-16-
dc.identifier.issn0370-3908spa
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1845-
dc.description.abstractLos recubrimientos de TiZrSiN tienen aplicaciones importantes como barreras contra la corrosión y estabilizadores térmicos. La adición de Si en las películas de TiZrN ayuda a aumentar la dureza y la estabilidad térmica del recubrimiento base. En este trabajo, películas delgadas de (Ti-Zr-Si)N fueron depositadas sobre la aleación de Ti6Al4V mediante la técnica de co-sputtering utilizando blancos de Ti5Si2 y Zr. La síntesis de los recubrimientos se realizó variando la potencia de descarga en la fuente RF encargada del blanco de Ti5Si2 a 130W, 150W y 170W, así como una variación en la temperatura de depósito a temperatura ambiente, 130° y 260°C. Los recubrimientos fueron caracterizados por medio de difracción de rayos X (XRD), donde se evidencia la formación de la fase que pertenece a la solución sólida (Zr,Ti)N, microscopía electrónica de barrido (SEM), espectroscopia UV-Vis y ensayos de dureza y pin-on-disc. El espesor fue medido a través de interferometría con valores entre 662 y 481nm para los recubrimientos depositados. De acuerdo con el mecanismo de falla en el ensayo de rayado, los mejores resultados obtenidos se dieron para una potencia de 170W y 260°C con una falla cohesiva Lc1=2.1N y una falla adhesiva Lc2=4.7N.spa
dc.description.abstractTiZrSiN coatings have important applications as corrosion barriers and thermal stabilizers. The addition of Si in TiZrN films helps increase hardness and thermal stability of the base coat. In this work thin films of (Ti-Zr-Si)N were deposited on the Ti6Al4V alloy by the co-sputtering technique and using Ti5Si2 and Zr targets. The synthesis of the coatings was carried out by varying the discharge power in the Ti5 well as a variation in the deposit temperature at room temperature 130° and 260°C. The coatings were characterized by means of X-ray diffraction (XRD), evidencing the formation of the phase that belongs to the solid solution (Zr, Ti)N, scanning electron microscopy (SEM), UV-Vis spectroscopy and hardness and pin-on-disc tests. The thickness was measured through interferometry with values between 662 and 481nm for the deposited coatings. According to the failure mechanism in the scratch test, the best results were obtained with a power of 170W and 260°C with a cohesive failure Lc1 = 2.1N and an adhesive failure Lc2 = 4.7N.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleSíntesis de recubrimientos nanoestructurados de (Ti-Zr-Si)N depositados sobre aleación de Ti6Al4Vspa
dc.titleSynthesis of nanostructured (Ti-Zr-Si)N coatings deposited on Ti6Al4V alloyeng
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica.spa
dcterms.referencesAbadias, G., Daniliuk, A. Y., Solodukhin, I. A., Uglov, V. V., & Zlotsky, S. V. (2018). Thermal stability of TiZrAlN and TiZrSiN films formed by reactive magnetron sputtering. InorganicMaterials: Applied Research. 9 (3): 418-426. doi.org/10.1134/S2075113318030024spa
dcterms.referencesAbadias, G., Koutsokeras, L. E., Dub, S. N., Tolmachova, G. N., Debelle, A., Sauvage, T., & Villechaise, P. (2010). Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti–Zr–N and Ti–Ta–N. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 28 (4): 541-551. doi.org/10.1116/1.3426296spa
dcterms.referencesAbrikosov, I. A., Knutsson, A., Alling, B., Tasnádi, F., Lind, H., Hultman, L., & Odén, M. (2011). Phase stability and elasticity of TiAlN. Materials. 4 (9): 1599-1618. doi.org/10.3390/ma4091599.spa
dcterms.referencesAttari, V., Cruzado, A., & Arroyave, R. (2019). Exploration of the microstructure space in TiAlZrN ultra-hard nanostructured coatings. Acta Materialia. doi.org/10.1016/j.actamat.2019.05.047.spa
dcterms.referencesBaturina, O. A., Epshteyn, A., Purdy, A., Simpkins, B., Forcherio, G. T., & Govorov, A. O. (2019). Comparison of Photocatalytic Activities of TiN and Zrn Nanoparticles Incorporated into TiO2 matrix Under Visible Excitation. In Meeting Abstracts (No. 45, pp. 2072-2072). The Electrochemical Society.spa
dcterms.referencesBendavid, A., Martin, P. J., Kinder, T. J., & Preston, E. W. (2003). Properties of Ti1-xSixNy films deposited by concurrent cathodic arc evaporation and magnetron sputtering. Surf. Coat. Technol, 163-164. doi.org/10.1016/S0257-8972(02)00491-7.spa
dcterms.referencesBisbal, R., Dávila, P., Gomez, F., Camero, S., Pérez, M., & González, G. (2012). Efecto del Ta en la aleación Ti-6Al-4V tratada térmicamente. Revista de la Facultad de Ingeniería Universidad Central de Venezuela, 27 (4): 83-94.spa
dcterms.referencesCardenas Flechas, L. J. (2018). Resistencia a la corrosión de recubrimientos nanoestructurados de Ti-Zr-Si-N. Ingeniería Mecánica.Universidad Nacional de Colombia. Retrieved from: https://repositorio.unal.edu.co/handle/unal/69879.spa
dcterms.referencesCardenas, J., Leon, J., & Olaya, J. J. (2019). Synthesis and high-temperature corrosion resistance of Ti-Zr-Si-N coatings deposited by means of sputtering. Corrosion Engineering, Science and Technology, 54 (3): 233-240. doi.org/10.1080/1478422X.2019.1573498.spa
dcterms.referencesCardenas, L. J. C., Barahona, E. T., Salamanca, M. L. P., Medina, J. X. L., & Florez, J. J. O. (2018). Evaluación de la resistencia a la oxidación de peliculas de Ti-Zr-Si-N producidas por cosputtering. Bistua Revista de la facultad de ciencias básicas. 15 (2). doi. org/10.24054/01204211.v2.n2.2017.2889.spa
dcterms.referencesCardenas L., Raba, A. M., Barba-Ortega, J., Moreno, L. C., & Joya, M. R. (2021). Effect of Calcination Temperature on the Behavior of the Agglomerated Co3O4 Nanoparticles Obtained Through the Sol–Gel Method. Journal of Inorganic and Organometallic Polymers and Materials. 31 (1): 121-128. doi.org/10.1007/s10904-020-01685-5spa
dcterms.referencesCardenas-Flechas, L. J., Raba, A. M., & Rincón-Joya, M. (2020). Synthesis and evaluation of nickel doped Co3O4 produced through hydrothermal technique. Dyna. 87 (213): 184-191. doi. org/10.15446/dyna.v87n213.84410spa
dcterms.referencesDing, X. Z., Tan, A. L. K., Zeng, X. T., Wang, C., Yue, T., & Sun, C. Q. (2008). Corrosion resistance of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films. 516 (16): 5716-5720. doi.org/10.1016/j.tsf.2007.07.069spa
dcterms.referencesEscobar, D., Ospina, R., Gómez, A. G., & Restrepo-Parra, E. (2015). Microstructure, residual stress and hardness study of nanocrystalline titanium–zirconium nitride thin films. Ceramics International. 41 (1): 947-952. doi.org/10.1016/j.ceramint.2014.09.012spa
dcterms.referencesGeorgson, M., Roos, A., & Ribbing, C. G. (1991). The influence of preparation conditions on the optical properties of titanium nitride based solar control films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 9 (4): 2191-2195. doi.org/10.1116/1.577249.spa
dcterms.referencesGuler, U., Boltasseva, A., & Shalaev, V. M. (2014). Refractory plasmonics. Science. 344 (6181): 263-264. doi: 10.1126/science.1252722spa
dcterms.referencesHuang, J. H., Ho, C. H., & Yu, G. P. (2007). Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si (1 0 0) and stainless steel substrates. Materials chemistry and physics. 102 (1): 31-38. doi.org/10.1016/j.matchemphys.2006.10.007spa
dcterms.referencesKameneva, A., & Kichigin, V. (2019). Corrosion, wear, and friction behavior of a number of multilayer two-, three-and multicomponent nitride coatings on different substrates, depending on the phase and elemental composition gradient. Applied Surface Science. doi.org/10.1016/j.apsusc.2019.05.331spa
dcterms.referencesKiryukhantsev-Korneev, F. V., Shirmanov, N. A., Sheveiko, A. N., Levashov, E. A., Petrzhik, M. I., & Shtanskii, D. V. (2010). Nanostructural wear-resistant coatings produced on metalcutting tools by electric-arc evaporation and magnetronic sputtering. Russian Engineering Research. 30 (9): 910-920. https://doi.org/10.3103/S1068798X10090133spa
dcterms.referencesKlamchuen, A., Suzuki, M., Nagashima, K., Yoshida, H., Kanai, M., Zhuge, F., & Kawai, T. (2015). Rational concept for designing vapor–liquid–solid growth of single crystalline metal oxide nanowires. Nano letters. 15 (10): 6406-6412. doi.org/10.1021/acs.nanolett.5b01604spa
dcterms.referencesKöpf, A., Keckes, J., Todt, J., Pitonak, R., & Weissenbacher, R. (2017). Nanostructured coatings for tooling applications. International Journal of Refractory Metals and Hard Materials. 62:219-224. doi.org/10.1016/j.ijrmhm.2016.06.017spa
dcterms.referencesLawal, J., Kiryukhantsev-Korneev, P., Matthews, A., & Leyland, A. (2017). Mechanical properties and abrasive wear behaviour of Al-based PVD amorphous/nanostructured coatings. Surface and Coatings Technology. 310: 59-69. doi.org/10.1016/j.surfcoat.2016.12.031spa
dcterms.referencesLin, Y. W., Huang, J. H., Yu, G. P., Hsiao, C. N., & Chen, F. Z. (2015). Influence of ion bombardment on structure and properties of TiZrN thin film. Applied Surface Science. 354: 155-160. https://doi.org/10.1016/j.apsusc.2015.02.190spa
dcterms.referencesMa, S. L., Ma, D. Y., Guo, Y., Xu, B., Wu, G. Z., Xu, K. W., & Chu, P. K. (2007). Synthesis and characterization of super hard, self-lubricating Ti–Si–C–N nanocomposite coatings. Acta Materialia. 55 (18): 6350-6355. doi.org/10.1016/j.actamat.2007.07.046spa
dcterms.referencesMacias, H. A., Yate, L., Coy, L. E., Aperador, W., & Olaya, J. J. (2019). Influence of Si-addition on wear and oxidation resistance of TiWSixN thin films. Ceramics International. 45 (14): 17363-17375. doi.org/10.1016/j.ceramint.2019.05.295spa
dcterms.referencesMikula, M., Roch, T., Plašienka, D., Satrapinskyy, L., Švec Sr, P., Vlčková, D., & Kúš, P. (2014). Thermal stability and structural evolution of quaternary Ti–Ta–B–N coatings. Surface and Coatings Technology. 259: 698-706. doi.org/10.1016/j.surfcoat.2014.10.009spa
dcterms.referencesMiletić, A., Panjan, P., Škorić, B., Čekada, M., Dražič, G., & Kovač, J. (2014). Microstructure and mechanical properties of nanostructured Ti–Al–Si–N coatings deposited by magnetron sputtering. Surface and Coatings Technology. 241: 105-111. doi.org/10.1016/j.surfcoat.2013.10.050spa
dcterms.referencesMoshtaghioun, B. M., Gómez-García, D., & Domínguez-Rodríguez, A. (2018). Spark plasma sintering of titanium nitride in nitrogen: Does it affect the sinterability and the mechanical properties. Journal of the European Ceramic Society. 38 (4): 1190-1196. doi.org/10.1016/j.jeurceramsoc.2017.12.029spa
dcterms.referencesNakayama, H., & Ozaki, K. (2015). Effect of mechanical milling of elemental powders on interface formation in TiN–Ni cermets prepared by pulsed current sintering. International Journal of Refractory Metals and Hard Materials. 51: 309-314. doi.org/10.1016/j.ijrmhm.2015.05.007spa
dcterms.referencesOlaya, J. J., Capote, G., & Marulanda. (2015). Producción, caracterizaciòn y aplicaciones de recubrimientos producidos por plasma. Universidad Nacional de Colombia. 1ra ed.spa
dcterms.referencesParra JP, Piamba OE, Olaya JJ. (2015). Resistencia a la corrosión a alta temperatura en películas delgadas de Bix Tiy Oz producidas por sputtering R. F. Revista Latinoamericana de Metalurgia y Materiales. 36: 2-8.spa
dcterms.referencesPhaengam, W., Horprathum, M., Chananonnawathorn, C., Lertvanithphol, T., Samransuksamer, B., Songsiriritthigul, P., & Chaiyakun, S. (2019). Oblique angle deposition of nanocolumnar TiZrN films via reactive magnetron co-sputtering technique: The influence of the Zr target powers. Current Applied Physics. 19 (8): 894-901. doi.org/10.1016/j.cap.2019.05.002spa
dcterms.referencesPogrebnjak, A. D., Shpak, A. P., Beresnev, V. M., Kolesnikov, D. A., Kunitskii, Y. A., Sobol, O. V., ... & Demyanenko, A. A. (2012). Effect of thermal annealing in vacuum and in air on nanograin sizes in hard and superhard coatings Zr–Ti–Si–N. Journal of Nanoscience and Nanotechnology. 12 (12): 9213-9219. doi.org/10.1166/jnn.2012.6777spa
dcterms.referencesRizzo, A., Signore, M. A., Penza, M., Tagliente, M. A., De Riccardis, F., & Serra, E. (2006). RF sputtering deposition of alternate iN/ZrN multilayer hard coatings. Thin Solid Films. 515 (2): 500-504. doi.org/10.1016/j.tsf.2005.12.279spa
dcterms.referencesRomero, E. C., Osorio, J. C., Soto, R. T., Macías, A. H., & Botero, M. G. (2019). Microstructure, mechanical and tribological performance of nanostructured TiAlTaN-(TiAlN/TaN) n coatings: Understanding the effect of quaternary/multilayer volume fraction. Surface and Coatings Technology. 377: 124875. doi.org/10.1016/j.surfcoat.2019.07.086spa
dcterms.referencesSaladukhin, I. A., Abadias, G., Michel, A., Uglov, V. V., Zlotski, S. V., Dub, S. N., & Tolmachova, G. N. (2015). Structure and hardness of quaternary TiZrSiN thin films deposited by reactive magnetron co-sputtering. Thin Solid Films. 581: 25-31. doi.org/10.1016/j.tsf.2014.11.020spa
dcterms.referencesPogrebnyak, A. D., & Beresnev, V. M. (2011). Effect of the preparation conditions on the phase composition, structure, and mechanical characteristics of vacuum-Arc Zr-Ti-Si-N coatings. The Physics of Metals and Metallography. 112 (2): 188. doi.org/10.1134/S0031918X11020268spa
dcterms.referencesUglov, V. V., Abadias, G., Zlotski, S. V., Saladukhin, I. A., Skuratov, V. A., Leshkevich, S. S., & Petrovich, S. (2015). Thermal stability of nanostructured TiZrSiN thin films subjected to helium ion irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 354: 264-268. doi.org/10.1016/j.nimb.2014.12.043spa
dcterms.referencesVanegas, H. S., Alfonso, J. E., & Olaya, J. J. (2019). Effect of Si content on functional behavior of nanostructured coatings of Zr–Si–N. Materials Research Express. 6 (11): 115076.spa
dcterms.referencesVeszelei, M., Andersson, K., Ribbing, C. G., Järrendahl, K., & Arwin, H. (1994). Optical constants and Drude analysis of sputtered zirconium nitride films. Applied optics. 33 (10): 1993-2001. doi.org/10.1364/AO.33.001993spa
dcterms.referencesYalamanchili, K., Forsén, R., Jiménez-Piqué, E., Jöesaar, M. J., Roa, J. J., Ghafoor, N., & Odén, M. (2014). Structure, deformation and fracture of arc evaporated Zr–Si–N hard films. Surface and Coatings Technology. 258: 1100-1107. 10.1016/j.surfcoat.2014.07.024spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1198-
dc.subject.proposal(Ti-Zr-Si)Nspa
dc.subject.proposal(Ti-Zr-Si)Neng
dc.subject.proposalTi6Al4Vspa
dc.subject.proposalTi6Al4Veng
dc.subject.proposalRecubrimientosspa
dc.subject.proposalCoatingseng
dc.subject.proposalCo-sputteringspa
dc.subject.proposalCo-sputteringeng
dc.subject.proposalNanoestructurasspa
dc.subject.proposalNanostructureseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume45spa
dc.relation.citationstartpage570spa
dc.relation.citationendpage581spa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.identifier.eissn2382-4980spa
dc.relation.citationissue175spa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
19 1198 Synthesis of nanostructured .pdf2.22 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons