Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1990 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCaja-Molina, Alisson Valeska-
dc.contributor.authorIannacone, José-
dc.date.accessioned2022-11-01T02:17:37Z-
dc.date.available2022-11-01T02:17:37Z-
dc.date.issued2021-09-16-
dc.identifier.issn0370-3908spa
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1990-
dc.description.abstractLos derrames de petróleo provocan contaminación acuática generando serios problemas ambientales. En el presente estudio, evaluamos el riesgo ambiental acuático del petróleo crudo al determinar los efectos letales y subletales en Lemna minor, Daphnia magna y Danio rerio . Determinamos la toxicidad de los hidrocarburos totales de petróleo (TPH) estableciendo las fracciones de petróleo acumuladas en agua. Los bioensayos se evaluaron utilizando un diseño de bloques completos al azar (RCBD) de 6 x 4 con cinco concentraciones más el control y cuatro repeticiones. Se evaluó el peso seco y clorosis en L. minor , la mortalidad e inmovilidad en D. magna , y la hipoactividad, escape de fondo e hipoventilación en D. rerio. En los resultados se consideraron las diferencias (p<0,05) entre las concentraciones y el control. La concentración a la que no se observó efecto por exposición al contaminante (NOEC) fue <0.4 y 3.22 mg/L para clorosis y peso seco en L. minor. En el caso de las pulgas de agua, obtuvimos una concentración efectiva mediana para inmovilidad (EC50-48h) de 2,74 mg/L y una concentración letal mediana para mortalidad (LC50-48h) de 6,22 mg/L. Para los bioensayos en peces, la NOEC y la concentración más baja a la que se observó un efecto (LOEC) del parámetro de hipoactividad fueron 14,28 y 28,61 mg/L, respectivamente. El efecto de escape de fondo ocurrió en el 100% de los peces a 3,58 mg/L. En cuanto a la hipoventilación, la NOEC y la LOEC fueron de 7,15 y 14,31 mg/L medidos a las 96 h. El orden decreciente de ecotoxicidad fue el siguiente:L. minor (<0,40 mg/L – clorosis a las 168 h) > D. magna (1,61 mg/L – inmovilidad a las 48 h) > D. rerio (<3,58 mg/L – escape inferior a las 96 h). El cociente de riesgo fue superior a 1, lo que evidenció el riesgo acuático ambiental.spa
dc.description.abstractOils spills cause aquatic pollution generating serious environmental problems. In the present study, we assessed the aquatic environmental risk of crude oil by determining lethal and sublethal effects in Lemna minor, Daphnia magna, and Danio rerio. We determined the toxicity of total petroleum hydrocarbons (TPH) establishing the water-accumulated fractions of petroleum. Bioassays were evaluated using a 6 x 4 randomized complete block design (RCBD) with five concentrations plus control and four repetitions. We evaluated the dry weight and chlorosis in L. minor, the mortality and immobility in D. magna, and the hypoactivity, bottom scape, and hypoventilation in D. rerio. In the results, we considered the differences (p<0.05) between concentrations and the control. The concentration at which no effect from exposure to the contaminant was observed (NOEC) was <0.4 and 3.22 mg/L for chlorosis and dry weight in L. minor. In the case of water fleas, we obtained a median effective concentration for immobility (EC50-48h) of 2.74 mg/L and a median lethal concentration for mortality (LC50-48h) of 6.22 mg/L. For fish bioassays, the NOEC and the lowest concentration at which an effect was observed (LOEC) of the hypoactivity parameter were 14.28 and 28.61 mg/L, respectively. The bottom scape effect occurred in 100% of the fish at 3.58 mg/L. As for hypoventilation, the NOEC and LOEC were 7.15 and 14.31 mg/L measured at 96 h. The decreasing ecotoxicity order was as follows: L. minor (<0.40 mg/L – chlorosis at 168 h) > D. magna (1.61 mg/L – immobility at 48 h) > D. rerio (<3.58 mg/L – bottom scape at 96 h). The risk quotient was higher than 1, which evidenced the environmental aquatic risk.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleEvaluación de riesgos ambientales del petróleo crudo en Lemna minor, Daphnia magna y Danio reriospa
dc.titleEnvironmental risk assessment of crude oil in Lemna minor, Daphnia magna, and Danio rerioeng
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad cientificaspa
dcterms.referencesAlmeda, R., Hyatt, C., Buskey, E.J. (2014). Toxicity of dispersant Corexit 9500A and crude oil to marine microzooplankton. Ecotoxicol. Environ. Saf. 106: 76-85.spa
dcterms.referencesArfsten, D. P., Schaeffer, D. J., Mulveny, D. C. (1996). The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants: A review. Ecotoxicol. Environ. Saf. 33: 1-24.spa
dcterms.referencesAvila, T.R., Bersano, J.G.F., Fillmann, G. (2010). Lethal and sub-lethal effects of the water-soluble fraction of a light crude oil on the planktonic copepod Acartia tonsa. J. Braz. Soc. Ecotoxicol. 5: 19-25.spa
dcterms.referencesBarros, I.T., Ceccon, J.P., Glinski, A., Liebel, S., Grötzner, S.R., Ferreira, M.A., Benedito, E., Feijó, C., Filipak, F., Oliveira, C.A. (2017). Environmental risk assessment in five rivers of Parana River basin, Southern Brazil, through biomarkers in Astyanax spp. Environ. Sci. Pollut. Res. 24: 16228-16240.spa
dcterms.referencesBecerra, S., Paichard, E., Sturma, A., Maurice, L. (2013). Vivir con la contaminación petrolera en el Ecuador: percepciones sociales del riesgo sanitario y capacidad de respuesta. Revista Lider. 23: 102-120.spa
dcterms.referencesBerrojalbiz, N., Lacorte, S., Calbet, A., Saiz, E., Barata, C., Dachs, J. (2009). Accumulation and cycling of polycyclic aromatic hydrocarbons in zooplankton. Environ. Sci. Technol. 43: 2295-2301.spa
dcterms.referencesBlewett, T. A., Delompré, P. L. M., Glover, C. N., Goss, G. G. (2018). Physical immobility as a sensitive indicator of hydraulic fracturing fluid toxicity towards Daphnia magna. Sci. Total Environ. 635: 639-643.spa
dcterms.referencesBlinova, I., Kanarbik, L., Sihtmäe, M., Kahru, A. (2016). Toxicity of water accommodated fractions of Estonian Shale fuel oils to aquatic organisms. Arch. Environ. Contam. Toxicol. 70: 383-391.spa
dcterms.referencesBobra, A.M., Shiu, W.Y., Mackay, D., Goodman, R.H. (1989). Acute toxicity of dispersed fresh and weathered crude oil and dispersants to Daphnia magna. Chemosphere. 19: 1199-1222.spa
dcterms.referencesBravo, E. (2007). Los impactos de la explotación petrolera en ecosistemas tropicales y la biodiversidad. Acción ecológica. 24: 35-42.spa
dcterms.referencesCalderón-Delgado, I.C., Mora-Solarte, D.A., Velasco-Santamaría, Y.M. (2020). Respuestas fisiológicas y capacidad antioxidante de Chlorella vulgaris (Chlorellaceae) expuesta a fenantreno. Acta biol. Colomb. 25: 225-234.spa
dcterms.referencesCampos, L.A., Cariello, F.A., Simões, L.N., Paulino, M.G., Vargas, T.S., Fernandes, M.N., Scherer, R., Chippari-Gomes, A.R. (2017). Water-soluble fraction of petroleum induces genotoxicity and morphological effects in fat snook (Centropomus parallelus). Ecotoxicol. Environ. Saf. 144: 275-282.spa
dcterms.referencesClaireaux, G., Quéau, P., Marras, S., Le Floch, S., Farrell, A. P., Nicolas-Kopec, A., Lemaire, P., Domenici, P. (2018). Avoidance threshold to oil water-soluble fraction by a juvenile marine teleost Fish. Environ. Toxicol. Chem. 37: 854-859.spa
dcterms.referencesCleuvers, M. (2003). Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol. Lett. 142: 185-194.spa
dcterms.referencesDjomo, J.E., Garrigues, P., Narbonne, J.F. (1996). Uptake and depuration of polycyclic aromatic hydrocarbons from sediment by the zebrafish (Brachydanio Rerio). Environ. Toxicol. Chem. 15: 1177-1181.spa
dcterms.referencesDuesterloh, S., Short, J.W., Barron, M.G. (2002). Photoenhanced toxicity of weathered Alaska North slope crude oil to the calanoid copepods Calanus marshallae and Metridia okhotensis. Environ. Sci. Technol. 36: 3853-3959.spa
dcterms.referencesEdema, N.E., Okoloko, E.G., Agbogidi, O.M. (2007). Physico-chemical characteristics of the water-soluble fraction of Ogini well-head crude oil and the effects on Pristia stratiotes Linn (Water lettuces). Am. Eurasian. J. Agric. Environ. Sci. 2: 633-638.spa
dcterms.referencesEdema, N.E. & Okoloko, E.G. (2008). Composition of the water soluble fraction (WSF) of Amukpe well-head crude oil before and after exposure to Pristia stratiotes L. Res. J. App. Sci. 3: 143-146.spa
dcterms.referencesEkanem, A.P., Asuquo, F.E., Ndick, E.J. (2011). Toxicity of crude oil to fresh water shrimp, Macrobrachium macrobrachion and Macrobrachium vollenhovenii from Nigerian coastal water. Bull. Environ. Contam. Toxicol. 86: 394-397.spa
dcterms.referencesEshagberi, G.O. (2017). Toxic effects of water-soluble fractions of crude oil, diesel and gasoline on Ceratophyllum Demersum. International Journal of Health and Medicine. 2: 6-9.spa
dcterms.referencesFekete-Kertész, I., Kunglné-Nagy, Z., Gruiz, K., Magyar, A., Farkas, E., Molnár, M. (2015). Assessing toxicity of organic aquatic micropollutants based on the total chlorophyll content of Lemna minor as a sensitive endpoint. Period. Polytech. Chem. Eng. 59: 262-271.spa
dcterms.referencesFekete-Kertész, I., Piszmán, D., Molnár, M. (2017). Particle size and concentration dependent ecotoxicity of nano- and microscale TiO2 —Comparative study by different aquatic test organisms of different trophic levels. Water Air Soil Pollut. 228: 245.spa
dcterms.referencesFlores, M.A., Torras, S., Téllez, R. (2004). Medidas de mitigación para uso de suelos contaminados por derrames de hidrocarburos en infraestructura de transporte terrestre (Publicación técnica N°257). Secretaría de comunicaciones y transportes instituto mexicano del transporte. Fecha de consulta: agosto de 2018. Disponible en: https://www.imt.mx/archivos/Publicaciones/PublicacionTecnica/pt257.pdfspa
dcterms.referencesGonçalves, R., Scholze, M., Ferreira, A.M., Martins, M., Correia, A.D. (2008). The joint effect of polycyclic aromatic hydrocarbons on fish behavior. Environ. Res. 108: 205-213.spa
dcterms.referencesHa, H., Park, K., Kang, G., Lee, S. (2019). QSAR study using toxicity of Daphnia magna and Hyalella azteca through exposure to polycyclic aromatic hydrocarbon (PAHs). Ecotoxicology. 28: 333-342.spa
dcterms.referencesHolth, T.F., Eidsvoll, D.P., Farmen, E., Sanders, M.B., Martínez-Gómez, C., Budzinski, H., Burgeot, T., Guilherminog, L., Hylland, K. (2014). Effects of water accommodated fractions of crude oils and diesel on a suite of biomarkers in Atlantic cod (Gadus morhua). Aquat. Toxicol. 154: 240-252.spa
dcterms.referencesHsu, C.S. & Robinson, P.R. (2019). Chemical Composition. En C.S. Hsu, P.R. Robinson (Ed.), Petroleum science and technology (pp. 39-56). Cham, Suiza: Springer.spa
dcterms.referencesHuang, X.D., Dixon, D.G., Greenberg, B.M. (1993). Impacts of uv radiation and photomodification on the toxicity of PAHs to the higher plant Lemna gibba (duckweed). Environ. Toxicol. Chem. 12: 1067-1077.spa
dcterms.referencesIannacone, J., Alvariño-Flores, L., Paredes-Espinal, C., Ayala-Oroya, H. (2012). Toxicidad aguda y crónica de la quinoleína fenólica sobre la pulga del agua Daphnia magna. Biologist (Lima). 10: 24-33.spa
dcterms.referencesLari, E., Abtahi, B., Seyed, M., Mohaddes, E., Doving, K.D. (2015a). The effect of sublethal concentrations of the water‐soluble fraction of crude oil on the chemosensory function of Caspian roach, Rutilus caspicus (Yakovlev, 1870). Environ. Toxicol. Chem. 34: 1826-1832.spa
dcterms.referencesLari, E., Abtahi, B., Hashtroudi, M.S. (2015b). The effect of the water soluble fraction of crude oil on survival, physiology and behaviour of Caspian roach, Rutilus caspicus (Yakovlev, 1870). Aquat. Toxicol. 170: 330-334.spa
dcterms.referencesLeadley, T., McLeod, A., Johnson, T., Heath, T., Drouillard, K. (2015). Uncovering adaptive versus acclimatized alterations in standard metabolic rate in Brown Bullhead (Ameiurus nebulosus). Can. J. Fish. Aquat. Sci. 73: 973-981.spa
dcterms.referencesLopes, A., Da Rosa-Osman, S.M., Fernandez M.T. (2009). Effects of crude oil on survival, morphology, and anatomy of two aquatic macrophytes from the Amazon floodplains. Hidrobiología. 636: 295-305.spa
dcterms.referencesMartínez-Jerónimo, F., Villaseñor, R., Ríos, G., Espinosa-Chávez, F. (2005). Toxicity of the crude oil water-soluble fraction and kaolin-adsorbed crude Oil on Daphnia magna (Crustacea: Anomopoda). Arch. Environ. Contam. Toxicol. 48: 444-449.spa
dcterms.referencesMinisterios de Ambiente-MINAM. Decreto Supremo N° 004-2017 (7 de junio de 2017). Aprueban estándares de calidad ambiental (ECA) para agua y establecen disposiciones complementarias. Diario Oficial El Peruano, 7 de junio de 2017.spa
dcterms.referencesMüller, J.B., Melegari, S.P., Perreault, F., Matias, W.G. (2019). Comparative assessment of acute and chronic ecotoxicity of water soluble fractions of diesel and biodiesel on Daphnia magna and Aliivibrio fischeri. Chemosphere. 221: 640-646.spa
dcterms.referencesNdimele, P.E. (2011). Acute toxicity of Nigerian crude oil (Bonny Light) to Desmocaris trispinosa (Crustacea, Palaemonidae). AACL. Bioflux. 4: 606-610.spa
dcterms.referencesNeff, J. M., Ostazeski, S., Gardiner, W., Stejskal, I. (2000). Effects of weathering on the toxicity of three offshore Australian crude oils and a diesel fuel to marine animals. Environ. Toxicol. Chem. 19: 1809-1821.spa
dcterms.referencesOCDE. (2004). Guideline for testing of Chemicals. Test No. 202: Daphnia sp. Acute Immobilisation Test. Fecha de consulta: entre marzo y julio de 2019. Disponible en: https://www.oecdilibrary. org/docserver/9789264069947-en.pdf?xpires=1621114445&id=id&accname=guest&checksum=784CB027CAFE3363FE66D15BAAA3B9Cspa
dcterms.referencesOCDE. (2006). Guideline for testing of Chemicals. Test No. 221: Lemna sp. Growth Inhibition Test. Fecha de consulta: entre marzo y julio de 2019. Disponible en: https://www.oecd-ilibrary. org/docserver/9789264016194-en.pdf?expires=1621114790&id=id&accname=guest&checksum=9EAE42390B8516E21F87321CEB26DCCFspa
dcterms.referencesOCDE. (2011). Manual for the Assessment of Chemicals. Organización para la Cooperación y el Desarrollo Económicos. Fecha der consulta: 21 de agosto de 2019. Disponible en: http://www.oecd.org/chemicalsafety/risk-assessment/49188998.pdfspa
dcterms.referencesOCDE. (2018). Guideline for testing of Chemicals. Test No. 203: Draft revised version. Fish, Acute Toxicity Test. Fecha de consulta: entre marzo y julio de 2019. Disponible en: https://www. oecd.org/chemicalsafety/testing/draft-revised-test-guideline-203-fish-acute-toxicity-test.pdfspa
dcterms.referencesOliveira, I.B., Groh, K.J., Schönenberger, R., Barroso, C., Thomas, K.V., Suter, M. J.F. (2017). Toxicity of emerging antifouling biocides to non-target freshwater organisms from three trophic levels. Aquat. Toxicol. 191: 164-174.spa
dcterms.referencesOmar-Ali, A., Hohn, C., Allen, P.J., Rodríguez, J., Petrie-Hanson, L. (2015). Tissue PAH, blood cell and tissue changes following exposure to water accommodated fractions of crude oil in alligator gar, Atractosteus spatula. Mar. Environ. Res. 108: 33-44.spa
dcterms.referencesParmar, T.K., Rawtani, D., Agrawal, Y.K. (2016). Bioindicators: the natural indicator of environmental pollution. Front. Life. Sci. 9: 110-118.spa
dcterms.referencesPhilibert, D.A., Philibert, C.P., Lewis, C., Tierney, K.B. (2016). Comparison of diluted bitumen (Dilbit) and conventional crude oil toxicity to developing zebrafish. Environ. Sci. Technol. 50: 6091-6098.spa
dcterms.referencesPicone, M., Distefano, G.G., Marchetto, D., Russo, M., Vecchiato, M., Gambaro, A., Barbante, C., Ghirardini, A.G. (2021). Fragrance materials (FMs) affect the larval development of the copepod. Acartia tonsa: An emerging issue for marine ecosystems. Ecotoxicol. Environ. Saf. 215: 112146.spa
dcterms.referencesSalaberria, L., Brakstad, O.G., Olsen, A.J., Nordtug, T., Hansen, B. H. (2014). Endocrine and AhR-CYP1A pathway responses to the water-soluble fraction of oil in zebrafish (Danio rerio Hamilton). Journal of Toxicology and Environmental Health, Part A. 77: 506-515.spa
dcterms.referencesSekomo, C.B., Rousseaua, D.P.L., Saleh, S.A., Lens, P.N.L. (2012). Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. Ecol. Eng. 44: 102-110.spa
dcterms.referencesSilva, A., Santos, L.H., Antão, C., Delerue-Matos, C., Figueiredo, S.A. (2017). Ecotoxicological evaluation of chemical indicator substances present as micropollutants in laboratory wastewaters. Glob. Nest J. 19: 94-99.spa
dcterms.referencesSobrino-Figueroa, A. (2018). Toxic effect of commercial detergents on organisms from different trophic levels. Environ. Sci. Pollut. Res. 25: 13283-13291.spa
dcterms.referencesSørensen, L., Sørhus, E., Nordtug, T., Incardona, J.P., Linbo, T.L., Giovanetti, L., Karlsen, Ø., Meier, S. (2017). Oil droplet fouling and differential toxicokinetics of polycyclic aromatic hydrocarbons in embryos of Atlantic haddock and cod. PLoS ONE. 12: e0180048.spa
dcterms.referencesTurja, R., Sanni, S., Stankevičiūtė, M., Butrimavičienė, L., Devier, M.H., Budzinski, H., Lehtonen, K.K. (2020). Biomarker responses and accumulation of polycyclic aromatic hydrocarbons in Mytilus trossulus and Gammarus oceanicus during exposure to crude oil. Environ. Sci. Pollut. Res. 27: 15498-15514.spa
dcterms.referencesWang, Y., Shen, C., Wang, C., Zhow, Y., Gao, D., Zuo, Z. (2018). Maternal and embryonic exposure to the water soluble fraction of crude oil or lead induces behavioral abnormalities in zebrafish Danio rerio, and the mechanisms involved. Chemosphere. 191: 7-16.spa
dcterms.referencesWernersson, A. (2004). Aquatic ecotoxicity due to oil pollution in the Ecuadorian Amazon. Aquat. Ecosyst. Health Manag. 7: 127-136.spa
dcterms.referencesWilson, K., Ralph, P. (2008). A comparison of the effects of Tapis crude oil and dispersed crude oil on subtidal Zostera capricorni. IOSC Proceedings. 2008: 859-864.spa
dcterms.referencesXu, G., Zhang, L., Yu, W., Sun, Z., Guan, J., Zhang, J., Lin, J., Zhou, J., Fan, J., Murugadoss, V., Guo, Z. (2020). Low optical dosage heating-reduced viscosity for fast and large-scale cleanup of spilled crude oil by reduced graphene oxide melamine nanocomposite adsorbents. Nanotechnology. 31: 225402.spa
dcterms.referencesYang, S., Ye, R., Han, B., Wei, C., Yang, X. (2014). Ecotoxicological effect of nano-silicon dioxide particles on Daphnia magna. Integr. Ferroelectr. 154: 64-72.spa
dcterms.referencesYu, X., Xu, C., Liu, H., Xing, B, Chen, L., Zhang, G. (2015). Effects of crude oil and dispersed crude oil on the critical swimming speed of puffer fish, Takifugu rubripes. Bull. Environ. Contam. Toxicol. 94: 549-553.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1398-
dc.subject.proposalBioindicadoresspa
dc.subject.proposalBioindicatoreng
dc.subject.proposalEcotoxicidad;spa
dc.subject.proposalDuckweedeng
dc.subject.proposalFracción acumulada de petróleospa
dc.subject.proposalEcotoxicityeng
dc.subject.proposalLenteja de aguaspa
dc.subject.proposalWater-accommodated fractioneng
dc.subject.proposalPez cebraspa
dc.subject.proposalWater fleaeng
dc.subject.proposalPulga de aguaspa
dc.subject.proposalZebra fisheng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume45spa
dc.relation.citationstartpage777spa
dc.relation.citationendpage794spa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.identifier.eissn2382-4980spa
dc.relation.citationissue176spa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
11 1398 Evaluación del riesgo ambiental .pdf452.44 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons