Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/2004 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQuimbay, Carlos-
dc.date.accessioned2022-11-01T21:23:25Z-
dc.date.available2022-11-01T21:23:25Z-
dc.date.issued2021-12-13-
dc.identifier.issn0370-3908spa
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/2004-
dc.description.abstractEl principal objetivo de este trabajo fue mostrar que la propagación de la pandemia de COVID-19 alrededor del mundo exhibe propiedades de sistema complejo tales como leyes lognormales, escalamiento de la fluctuación temporal y correlación en el tiempo. Primero, el número acumulado diario de casos confirmados y de muertes se distribuye entre los países del mundo como lognormales, de tal manera que estas series de tiempo exhiben la propiedad de escalamiento de la fluctuación temporal. Segundo, se muestra que las series de tiempo de retornos diarios de casos confirmados y de muertes por día están asociadas con distribuciones de Levy estables, y que presentan la propiedad de correlación temporal. La principal motivación del trabajo fue llamar la atención sobre el hecho de que la propagación de la pandemia de COVID-19 puede verse como un sistema complejo y contribuir a determinar las propiedades estructurales de este sistema, lo que es relevante dado que se espera que los futuros modelos estocásticos que describan la propagación de la pandemia desde la perspectiva de una dinámica microscópica deberían poder explicar, en principio, el surgimiento de las propiedades estructurales establecidas en este trabajo.spa
dc.description.abstractThe objective of the present study was to show that the spread of the COVID-19 pandemic around the world shows complex system properties such as lognormal laws, temporal fluctuation scaling, and time correlation. First, the daily cumulative number of confirmed cases and deaths is distributed among countries as lognormals such that the time series exhibit a temporal fluctuation scaling. Second, the daily return time series of cases and deaths per day have associated Levy stable distributions and they have time correlation. The idea was to draw attention to the fact that the spread of the COVID-19 pandemic can be seen as a complex system, and, thus, contribute to the identification of the structural properties of this system, which is relevant as it is expected that future stochastic models describing the spread of the COVID-19 pandemic from a microscopic dynamics perspective should be able to explain the emergence of the structural properties identified here.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titlePropiedades de sistemas complejos en la propagación de la pandemia de COVID-19spa
dc.titleComplex system properties in the spreading of COVID-19 pandemiceng
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad cientifica.spa
dcterms.referencesAbril F. S. & Quimbay C. J. (2021). Temporal fluctuation scaling in nonstationary time series using the path integral formalism. Physical Review E. 103: 042126. Doi: 10.1103/PhysRevE.103.042126spa
dcterms.referencesÁlvarez, E., Brida, J. G., Linas, E. (2020). Comparisons of COVID-19 dynamics in the different countries of the World using time-series clustering. medRXiv preprint. Doi: 10.1101/2020.08.18.20177261spa
dcterms.referencesAnacleto, M. A., Brito, F. A., de Queiroz, A. R., Passos, E., Santos, J. R. L. (2020). Diffusive process under Lifshitz scaling and pandemics scenarios. Physica A: Statistical Mechanics and its Applications. 559: 125092. Doi: 10.1016/j.physa.2020.125092spa
dcterms.referencesAntónio, N., Rita, P., Saraiva, P. (2021). COVID-19: Worldwide profiles during the first 250 days. Applied Sciences. 11: 3400. Doi: 10.3390/app11083400spa
dcterms.referencesBarro, R. J., Ursúa, J. F., Weng, J. (2020). The Coronavirus and the Great Influenza Pandemic: Lessons from the “Spanish Flu”for the Coronavirus’s potential effects on mortality and economic activity. Working Paper 26866. National Bureau of Economic Research. Doi 10.3386/w26866spa
dcterms.referencesBeare, B. K. & Toda, A. A. (2020). Diffusive process under Lifshitz scaling and pandemics scenarios. Physica D: Nonlinear Phenomena. 412: 132649. Doi: 10.1016/j.physd.2020.132649spa
dcterms.referencesChen, C. C., Lee, Y. T., Chang, Y. F. (2008). A relationship between Hurst exponents of slip and waiting time data of earthquakes. Physica A: Statistical Mechanics and its Applications. 387(18): 4643-4648. Doi: 10.1016/j.physa.2007.08.063spa
dcterms.referencesDimarco, G., Pareschi, L., Toscani, G., Zanella, M. (2020). Wealth distribution under the spread of infectious diseases. Physical Review E.102: 022303. Doi: 10.1103/PhysRevE. 102.022303spa
dcterms.referencesDong, E., Du, H., Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. Correspondence. 20 (5): 533-534. Doi: 10.1016/S1473-3099(20)30120-1spa
dcterms.referencesDrăgulescu, A. & Yakovenko, V. M. (2000). Statistical mechanics of money. The European Physical Journal B. 17: 723-729. Doi: 10.1007/s100510070114spa
dcterms.referencesEisler, Z. & Kertész, J. (2006). Scaling theory of temporal correlations and size-dependent fluctuations in the traded value of stocks. Physical Review E. 73: 046109. Doi: 10.1103/PhysRevE.73.046109spa
dcterms.referencesEisler, Z., Bartos, I., Kertész, J. (2007). Fluctuation scaling in complex systems: Taylor’s law and beyond. Advances in Physics. 57 (1): 89-142. Doi: 10.1080/00018730801893043spa
dcterms.referencesFeoli, A., Lannella, A. L., Benedetto, E. (2020). Spreading of COVID-19 in Italy as the spreading of a wave packet. The European Physical Journal Plus. 135: 644. Doi: 10.1140/epjp/s13360-020-00663-7spa
dcterms.referencesFronczak, A. & Fronczak, P. (2010). Origins of Taylor’s power law for fluctuations scaling in complex systems. Physical Review E. 81: 066112. Doi: 10.1103/PhysRevE.81.066112spa
dcterms.referencesGitHub. (2021). COVID-19 Data. Accessed on: September 16, 2021. Available from: covid-19 data/public/data at master · owid/covid-19-data · GitHub.spa
dcterms.referencesGrau-Carles, P. (2000). Empirical evidence of long-range correlations in stock returns. Physica A: Statistical Mechanics and its Applications. 287 (3-4): 396-404. Doi: 10.1016/S0378-4371(00)00378-2spa
dcterms.referencesHays, J. N. (2005). Epidemics and pandemics: their impact on human history. ABC-Clio, Inc. Santa Barbara, California, Pgs. 23, 41, 171, 193, 385.spa
dcterms.referencesHolovatch, Y., Kenna, R., Thurner S. (2017). Complex systems: physics beyond physics. European Journal of Physics. 38: 023002. Doi: 10.1088/1361-6404/aa5a87spa
dcterms.referencesHuremović, D. (2019). Brief History of Pandemics (Pandemics Throughout History). In: Huremović D. (eds) Psychiatry of Pandemics. Springer, Cham. Doi: 10.1007/978-3-030-15346-5_2spa
dcterms.referencesLimpert, E., Stahel, W. A., Abbt M. (2001). Log-normal distributions across the sciences: keys and klues. BioSciences. 51: 341-352. https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2spa
dcterms.referencesManttegna, R. N. & Stanley, H. E. (2000). An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge. p. 48.spa
dcterms.referencesMelin, P. & Castillo, O. (2020). Analysis of spatial spread relationships of Coronavirus (COVID-19) pandemic in the world using self-organizing maps. Chaos, Solitons & Fractals. 138: 109917. Doi: 10.1016/j.chaos.2020.109917spa
dcterms.referencesMartín-Montoya, L. A., Aranda-Camacho, N. M., Quimbay, C. J. (2015). Long-range correlations and trends in Colombian seismic time series. Physica A: Statistical Mechanics and its Applications. 421: 124 133. Doi: 10.1016/j.physa.2014.10.073spa
dcterms.referencesMitzenmacher, M. (2004). A brief history of generative models for power law and lognormal distributions. Internet Mathematics. 1: 226-251. Doi: 10.1080/15427951.2004.10129088spa
dcterms.referencesQuevedo, D. S. & Quimbay, C. J. (2020). Non-conservative kinetic model of wealth exchange with saving of production. The European Physical Journal B. 93: 186. Doi: 10.1140/epjb/e2020-10193-3spa
dcterms.referencesSánchez-Granero, M. A., Trinidad-Segovia, J. E., García-Pérez, J. (2008). Some comments on Hurst exponent and the long-memory processes on capital markets. Physica A: Statistical Mechanics and its Applications. 387: 5543-5551. Doi: 10.1016/j.physa.2008.05.053spa
dcterms.referencesStanley, H. E. (1971). Introduction to phase transitions and critical phenomena. Oxford University Press, London. p. 226.spa
dcterms.referencesThurner S., Klimek, P., Hanel, R. (2020). A network-based explanation of why most COVID-19 infection curves are linear. Proceedings of the National Academic of Sciences of the United States of America. 117 (37): 22684-22689. Doi: 10.1073/pnas.2010398117spa
dcterms.referencesTrinidad-Segovia, J. E., Fernández-Martínez, M., Sánchez-Granero, M. A. (2012). A note on geometric method-based procedures to calculate the Hurst exponent. Physica A: Statistical Mechanics and its Applications. 391: 2209-2214. Doi: 10.1016/j.physa.2011.11.044spa
dcterms.referencesVarotsos. P. A., Sarlis, N. V., Skordas, E. S. (2002). Long-range correlations in the electric signals that precede rupture. Physical Review E. 66: 011902. Doi: 10.1103/PhysRevE.66.011902spa
dcterms.referencesWorldometers. (2021). “COVID-19 coronavirus pandemic”. Accessed on: September 16, 2021.Available from: https://www.worldometers.info/coronavirusspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1459-
dc.subject.proposalPandemia de COVID-19spa
dc.subject.proposalCOVID-19 pandemiceng
dc.subject.proposalPropagaciónspa
dc.subject.proposalSpreadeng
dc.subject.proposalSerie temporalspa
dc.subject.proposalTime serieseng
dc.subject.proposalDistribuciones estables Lognormal y Levyspa
dc.subject.proposalLognormal and Levy stable distributionseng
dc.subject.proposalCorrelación de tiempospa
dc.subject.proposalTime correlationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume45spa
dc.relation.citationstartpage1039spa
dc.relation.citationendpage1052spa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.identifier.eissn2382-4980spa
dc.relation.citationissue177spa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
6 1459 Complex system properties in theNV .pdf1.37 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons