Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/2005 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRodríguez-Páez, Jorge Enrique-
dc.date.accessioned2022-11-01T21:26:47Z-
dc.date.available2022-11-01T21:26:47Z-
dc.date.issued2021-12-13-
dc.identifier.issn0370-3908spa
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/2005-
dc.description.abstractLa aplicación de la nanotecnología, específicamente de las nanopartículas (NP), en campos como la medicina, la remediación ambiental y la agricultura, requiere el conocimiento y la comprensión de las interacciones que ocurren entre los sistemas biológicos y las NP. Es, por tanto, necesario emprender el estudio de la nano-biointerfaz. En base a los resultados obtenidos en estudios sobre la capacidad antifúngica y antibacteriana de las nanopartículas de óxido de zinc (ZnO-NPs), se presenta una revisión de ciertos fenómenos fisicoquímicos que pueden ocurrir en la interfase semiconductor-membrana celular y que permitirían explicar la acción de estas. NP. En concreto, se analizaron los efectos sobre un sistema biológico de interacciones de tipo entrópico, la naturaleza semiconductora del ZnO y la existencia de defectos específicos en el sólido. A partir de estos procesos fisicoquímicos,spa
dc.description.abstractThe application of nanotechnology, specifically of nanoparticles (NPs), in fields such as medicine, environmental remediation, and agriculture, requires knowledge and understanding of the interactions occurring between biological systems and NPs. It is, therefore, necessary to undertake the study of the nano-biointerface. Based on the results obtained in studies on the antifungal and antibacterial capacity of the zinc oxide nanoparticles (ZnO-NPs), a review is presented of certain physicochemical phenomena that might occur at the semiconductor-cellmembrane interface and that would allow explaining the action of these NPs. Specifically, analysis was made of the effects on a biological system of entropic-type interactions, the semiconductor nature of ZnO and the existence of specific defects in the solid. Based on these physicochemical processes, qualitative models were structured of mechanisms that would explain the effects of the presence of ZnO-NPs on cultures of various fungi (Omphalia sp., Colletotrichum sp., and Phoma sp.), their growth inhibition, and the alteration of their ultrastructure, as well as on Escherichia coli bacteria, whose growth was inhibited up to ⁓70% reaching an MIC50 of 30.40 µg/mL without incidence of UV radiation.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleLa nano-biointerfaz membrana-célula semiconductora: fenómenos fisicoquímicos a considerar en la explicación de la nanotoxicidad y capacidad antifúngica de las nanopartículas de óxido de zincspa
dc.titleThe semiconductor-cell membrane nano-biointerface: Physicochemical phenomena to consider in explaining the nanotoxicity and antifungal capacity of zinc oxide nanoparticleseng
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad cientifica.spa
dcterms.referencesAbbasi, B. A., Iqbal, J., Ahmad, R., Zia, L., Kanwal, S., Mahmood, T., Wang, C., Chen, J. T., (2020). Bioactivities of Geranium wallichianum Leaf Extracts Conjugated with Zinc Oxide Nanoparticles. Biomolecules 10(1): 38.spa
dcterms.referencesAgredo-Trochez, Y. A., Molano-Cabezas, A. C. (2020). obtención de nanopartículas de óxido de magnesio (MgO) y óxido de cobre (CuO) por una ruta química y estudio de su actividad fungicida sobre el hongo Omphalia sp. Trabajo de Grado programa Ingeniería Física – Popayán, Colombia: Universidad del Cauca.spa
dcterms.referencesAlghuthaymi, M. A., Rajkuberan, C., Rajiv, P., Kalia, A., Bhardwaj, K., Bhardwaj, P., Abd-Elsalam, K. A., Valis, M., Kuca, K. (2021). Nanohybrid antifungals for control of plant diseases: current status and future perspectives, J. Fungi 7: 48.spa
dcterms.referencesArakh, M., Saleem, M., Mallick, B. C., Jha, S. (2015). The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci. Rep. 5: 9578.spa
dcterms.referencesArciniegas-Grijalba, P. A., Patiño-Portela, M. C. (2015). Evaluación in-vitro de la capacidad antifúngica de nanopartículas de ZnO sobre cepas de Phoma sp. y Erythricium salmonicolor, agentes causales de enfermedades en el cafeto (Coffea arabica L.). Trabajo de Grado programa Biología – Popayán, Colombia: Universidad del Cauca.spa
dcterms.referencesArciniegas-Grijalba, P. A., Patiño-Portela, M. C., Mosquera-Sánchez, L. P., Guerrero-Vargas, J. A., Rodríguez-Páez, J. E. (2017). ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor, Appl. Nanosci. 7: 225-241.spa
dcterms.referencesArciniegas-Grijalba, P. A., Patiño-Portela, M. C., Mosquera-Sánchez, L. P., Guerra Sierra, B. E., Muñoz Florez, J. E., Erazo-Castillo, L. A., Rodríguez-Páez, J. E. (2019). ZnO-based nanofungicides: Synthesis, characterization and their effect on the coffee fungi Mycena citricolor and Colletotrichum sp. Mater. Sci. Eng. C 98: 808-825.spa
dcterms.referencesBenítez-Salazar, M. I. (2021). Obtención de nanopartículas de óxido de cinc por síntesis química y verde, y determinación de su capacidad antibacterial. Trabajo de Grado programa Ingeniería Física – Popayán, Colombia: Universidad del Cauca.spa
dcterms.referencesBowman, S.M., Free, S.J. (2006). The structure and synthesis of the fungal cell wall, Bioessays 28(8): 799 808.spa
dcterms.referencesBrian, S. W., Mudun Kotuwa, I. A., Rupasinghe, T., Grassian, V. H. (2011). Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: Influence of pH, ionic strength, size and adsorption of humic acid. Langmuir 27: 6059-6068.spa
dcterms.referencesCai, K., Wang, A. Z., Yin, L., Cheng, J. (2017). Bio-nano interface: The impact of biological environment on nanomaterials and their delivery properties. Journal of Controled Release 263: 211-222.spa
dcterms.referencesCiofani, G. (Ed) (2018). Smart nanoparticles for biomedicine. Cambridge, United States: Elsevier Inc. De, M., Ghosh, P. S., Rotello, V. M. (2008). Applications of Nanoparticles in Biology. Adv. Mater. 20: 42254241.spa
dcterms.referencesDe Lucas-Gil, E., Leret, P., Monte-Serrano, M., Reinosa, J. J., Enriquez, E., Del Campo, A., Cañete, M., Menéndez, Fernández, J. F., Rubio-Marcos, F. (2018). ZnO nanoporous spheres with broad-spectrum antimicrobial activity by physico chemical interactions. ACS Appl. Nano Mater. 1: 3214-3225.spa
dcterms.referencesDe Lucas-Gil, E., Reinosa, J. J., Neuhaus, K., Vera-Londoño, L., Martín-González, M., Fernández, J. F., Rubio-Marcos, F. (2017). Exploring new mechanisms for effective antimicrobial materials: Electric contact – killing based on multiple Schottky barriers. ACS Appl. Mater. Interfaces 9(31): 26219-26225.spa
dcterms.referencesDeHoff, R. (2006). Thermodinamics in materials science. Second edition. Boca Ratón, USA: CRC Taylor & Francis Group, LLC.spa
dcterms.referencesDemir, E. (2020). A review on nanotoxicity and nanogenotoxicity of different shapes of nanomaterials. J Appl Toxicol. 41: 118 – 147.spa
dcterms.referencesErazo, A., Mosquera, S. A., Rodríguez-Páez, J. E. (2019). Synthesis of ZnO nanoparticles with different morphology: Study of their antifungal effect on strains of Aspergillus niger and Botrytis cinérea, Materials Chemistry and Physics 234: 172–184.spa
dcterms.referencesFaisal, M., Saquib, Q., Alatar, A. A., Al-Khedhairy, A. A. (Eds) (2018). Phytotoxicity of nanoparticles. Cham, Switzerland: Springer Nature.spa
dcterms.referencesFrederick, K. K., Marlow, M. S., Velentine, K. G., Wand, A. J. (2007). Conformational entropy in molecular recognotion by proteins. Nature 448: 325-329.spa
dcterms.referencesGerisher, H. (1990). The impact of semiconductors on the concepts of electrochemistry. Electrochem. Acta 35: 1677-1699.spa
dcterms.referencesGoppert, T. M., Muller, R. H. (2005). Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int. J. Pharm 302: 172-186.spa
dcterms.referencesGudkov, S. V., Burmistrov, D. E., Serov, D. A., Rebezov, M. B., Semenova, A. A., Lisitsyn, A. B. (2021). A mini review of antibacterial properties of ZnO nanoparticles, Front. Phys. 9: 641481.spa
dcterms.referencesGunkel, F., Christensen, D. V., Chen, Y. Z., Pryds, N. (2020). Oxygen vacancies: The (in)visible friend of oxide electronics. Appl. Phys Lett. 116: 120505.spa
dcterms.referencesHu, J., Lipowsky, R., Weikl, T. R. (2013). Binding constants of membrane–anchored receptors and ligands depend strongly on the nanoscale roughness of membranes. Proc. Nal. Acad. Sci. U.S.A. 110: 15283 15288.spa
dcterms.referencesJaaniso, R., Tan, O. K. (Eds) (2013). Semiconductor gas sensors. Philadelphia, USA: Woodhead Publishing.spa
dcterms.referencesJedsukontorn, T., Ueno, T., Saito, N., Hunsom, M. (2018). Mechanistic aspect based on the role of reactive oxidizing species (ROS) in macroscopic level on the glycerol photooxidation over defected and defected-free TiO2. J. Photochem. Photobiol. A Chem. 367: 270–281.spa
dcterms.referencesJiang, Y., Tian, B. (2018). Inorganic semiconductor biointerfaces. Nature Rev/Materials 3: 473-490. Li, G. Blake, G. R., Palstra, T. T. M. (2017). Vacancies in functional materials for clean energy storage and harvesting: the perfect imperfection. Chem. Soc. Rev. 46: 1693-1706.spa
dcterms.referencesLichterman, M. F., Hu, S., Richter, M. H., Crumlin, E. J., Axnanda, S., Lewis, N. S. Liu, Z., Lewerenz, H. J. (2015). Direct observation of the energetics at a semiconductor/liquid junction by operando x-ray photoelectron spectroscopy. Energy Environ. Sci. 8: 2409-2416.spa
dcterms.referencesLiu, Y. Zhao, Y., Sun, B., Chen, C. (2013). Understanding the toxicity of carbon nanotubes. ACC Chem. Res. 46: 702-713.spa
dcterms.referencesLópez-Valdez, F., Fernández.Luqueño, F. (Eds) (2018). Agricultural nanobiotechnology. Cham, Switzerland: Springer Nature.spa
dcterms.referencesLyklema, J. (1993). Fundamentals of interface and colloid science: Fundamentals. Volume 1. Second Edition. San Diego, USA: Academic Press Limited.spa
dcterms.referencesMa, H., Williams, P. L., Diamond, S. A. (2013). Ecotoxicity of manufactured ZnO nanoparticles - A review, Environmental Pollution 172: 76-85.spa
dcterms.referencesMedina, J., Bolaños H., Mosquera‑Sanchez, L. P., Rodriguez‑Paez, J. E. (2018). Controlled synthesis of ZnO nanoparticles and evaluation of their toxicity in Mus musculus mice, International Nano Letters 8: 165–179.spa
dcterms.referencesMin, Y., Akhulut, M., Kristiansen, K., Golan, Y., Israelachvili, J. (2008). The role of interparticle and external forces in nanoparticle assembly. Nature Mater. 7: 527-538.spa
dcterms.referencesMosquera Sánchez, L. P. (2021). Caracterización morfológica genética y patogénica del hongo colletotrichum spp en café y evaluación del efecto de nanopartículas de ZnO sobre el patógeno. Tesis Doctoral en desarrollo del Programa de Doctorado en Ciencias Agrarias – Palmira, Colombia: Universidad Nacional de Colombia.spa
dcterms.referencesMosquera-Sánchez, L.P., Arciniegas-Grijalba, P.A., Patiño-Portela, M. C., Guerra–Sierra, B. E., Muñoz Florez, J. E., Rodríguez-Páez, J. E. (2020). Antifungal effect of zinc oxide nanoparticles (ZnO-NPs) on Colletotrichum sp., causal agent of anthracnose in coffee crops, Biocatalysis and Agricultural Biotechnology 25: 101579.spa
dcterms.referencesMu, Q., Jiang, G., Chen, L., Zhou, H., Fourches, D., Tropsha, A., Yan, B. (2014). Chemical basis of interactions between engineered nanoparticles and biological systems. Chem. Rev. 114: 7740-7781.spa
dcterms.referencesNel, A.E., Mädler, L., Velegel, D., Xia, T., Hork, E. M. V., Somasundaran, P., Klaessig, F., Castranova, V., Thompson, M. (2009). Understanding biophysicochemical interaction at the nano-biointerface. Nature Mater. 8: 543-557.spa
dcterms.referencesNel, A., Xia, T., Mädler, L., Li, N. (2006). Toxic potential of materials at the nanolevel. Science 311: 622-627.spa
dcterms.referencesNosaka, Y., Nosaka, A. Y. (2017). Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117(17): 11302–11336.spa
dcterms.referencesNozik, A. J., Memming, R. (1996). Physical chemistry of semiconductor – liquid interfaces. J. Phys. Chem. 100: 13061-13078.spa
dcterms.referencesOhshima, H. (Ed). (2012). Electrical phenomena at interfaces and biointerfaces. Hoboken - New Jersey, USA: John Wiley & Sons Inc.spa
dcterms.referencesPadmavathy, N., Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles - an antimicrobial study. Sci. Technol. Adv. Mater. 9: 035004.spa
dcterms.referencesParashar, S. K. S., Murty, B. S., Repp, S., Weber, S., Erdem, E. (2012) Investigation of intrinsic defects in core-shell structured ZnO nanocrystals. J. Appl. Phys. 111(11): 113712.spa
dcterms.referencesPatiño-Portela, M. C., Arciniegas-Grijalba, P. A., Mosquera-Sánchez, L. P., Guerra Sierra, B. E., Muñoz Florez, J. E., Erazo-Castillo, L. A., Rodríguez-Páez, J. E. (2021). Effect of method of synthesis on antifungal ability of ZnO nanoparticles: Chemical route vs green route, Advances in Nano Research 10: 191-210.spa
dcterms.referencesPrasanna, V. L., Vijayaraghavan, R. (2015). Insight into the mechanism of antibacterial activity of ZnO – surface defects mediated reactive oxygen species even in dark. Langmuir 31(33): 9155–9162.spa
dcterms.referencesPulido-Reyes, G., Leganes, F., Fernández-Piñas, F., Rosal, R. (2017). Bio-nano interface and environment: A critical review. Envriron. Toxicol. Chem. 36: 3181-3193.spa
dcterms.referencesPulido-Reyes, G., Rodea-Palomares, I., Das, S. Sakthivel, T. S. Leganes, F., Rosal, R. Seal, S., Fernández Piñares, F. (2015). Untangling the biological effects of cerium oxide nanoparticles: The role of Surface valence states. Sci. Rep. 5: 15613.spa
dcterms.referencesRahman, M., Laurent, S., Tawil, N., Yahia, L., Mahmoudi, M. (2013). Protein – nanoparticle interactions: The bio-nano interface. Heidelberg, Germany: Springer-Verlag.spa
dcterms.referencesRen, C. L., Ma, Y. Q. (2009). Structure and organization of nanosized-inclusion-containing bilayer membranas. Phys. Rev. E 80: 011910.spa
dcterms.referencesRhoderick, E. H. (1980). Metal semiconductor contacts. Oxford, United Kingdom: Oxford University Press.spa
dcterms.referencesRodríguez-Páez, J. E. (2013). Síntesis de óxidos de interés industrial. Popayán, Colombia: SAVAMA impresiones.spa
dcterms.referencesRodríguez-Páez, M., Ochoa-Muñoz, Y., Rodríguez-Páez, J. E. (2019). Efficient removal of glyphosate based herbicide from water using ZnO nanoparticles (ZnO-NPs). Biocatalysis and Agricultural Biotechnology 22: 101434.spa
dcterms.referencesRomashchenko, A. V., Kan, T. W., Petrovski, D. V., Glinskaya, L. A., Moshkin, M. P., Moshkin, Y. M. (2017). Nanoparticles associate with intrinsically disordered RNA-binding proteins. ACS Nano 11: 1328-1339.spa
dcterms.referencesSalata, O. V. (2004). Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology 2:3.spa
dcterms.referencesSawai, J., Kawada, E., Kanou, F., Igarashi, H., Hashimoto, A., Kokugan, T., Shimizu, M. (1996). Detection of active oxygen generated from ceramic powders having antibacterial activity. J. Chem. Eng. Jpn. 29(4): 627–633.spa
dcterms.referencesSingh, S. (2019). Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicology Mechanisms and Methods 29: 300-311.spa
dcterms.referencesSirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism, Nano-Micro Lett. 7(3): 219–242.spa
dcterms.referencesShapiro, S., Caspi, E. (1998). The steric course of enzymic hydroxylation at primary carbon atoms. Tetrahedron 54: 5005-5040.spa
dcterms.referencesSuib, S. L. (Ed). (2013). New and future developments in catalysis: Solar photocatalysis. Amsterdam, The Netherlands: Elsevier B. V.spa
dcterms.referencesSze, S. M., Ng, K. K. (2007). Physics semiconductor devices. Hoboken - New Jersey, USA: John Wiley & Sons Inc.spa
dcterms.referencesTian, X., Chong, Y., Ge, C. (2020). Understanding the nano-bio interactions and the corresponding biological responses. Frontiers in Chemistry 8: article 446.spa
dcterms.referencesVargas, M. A., Rivera, E. M., Diosa, J. E., Mosquera, E. E., Rodríguez-Páez, J. E. (2021). Nanoparticles of ZnO and Mg-doped ZnO: Synthesis, characterization and efficient removal of methy orange (MO) from aqueous solution. Ceramics International 47: 15668-15681.spa
dcterms.referencesVerma, A., Stellaci, F. (2010). Effect of surface properties on nanoparticle – cell interactions. Small 10: 12 21.spa
dcterms.referencesVerma, S. K., Jha, E., Kumar Panda, P., Das, J. K., Thirumurugan, A., Suar, M., Parashar, S. K. S. (2018). Molecular aspects of core-shell intrinsic defect induced enhanced antibacterial activity of ZnO nanocrystals. Nanomedicine (Lond.) 13(1): 43-68.spa
dcterms.referencesWang, B., Min, J., Zhao, Y., Sang, W., Wang, C. (2009). The grain boundary related p-type conductivity in ZnO films prepared by ultrasonic spray pyrolysis. Appl. Phys. Lett. 94: 192101-192103.spa
dcterms.referencesWendt, S., Sprunger, P. T. Lira, E., Madsen, G. K. H., Li, Z., Hansen, J. O., Matthiesen, J., Blekinge Rasmussen, A., Laegsgaard, E., Hammer, B., Besenbacher, F. (2008). The role of interstitial sites in the Ti3d defect state in the band of titania. Science 320: 1755-1759.spa
dcterms.referencesWinkler, P., Zeininger, J., Suchorski, Y., Stöger-Pollach, M., Zeller, P., Amati, M., Gregoratti, L., Rupprechter, G. (2021). How the anisotropy of surface oxide formation influences the transient activity of a surface reaction, Nat. Commun. 12: 69.spa
dcterms.referencesXie, Y., He, Y., Irwin, P. L., Jin, T., Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7): 2325– 2331.spa
dcterms.referencesXu, G., Huang, Z., Chen, P., Cui, T., Zhang, X., Miao, B., Yan, L. T. (2017). Optimal reactivity and improved self-healing capability of structurally dynamic polymers grafted on janus nanoparticles governed by chain stiffness and spatial organization. Small 13(13): 1603155.spa
dcterms.referencesXu, X., Chen, D., Yi, Z., Jiang, M., Wang, L. Zhou, Z., Fan, X., Wang, Y., Hui, D. (2013). Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir 29(18): 5573 5580.spa
dcterms.referencesYan, B., Zhou, H., Gardea-Torresdey, J. L. (Eds) (2017). Bioactivity of engineered nanoparticles. Gatewayeast – Singapore, Singapore: Springer Nature Singapore Pte Ltd.spa
dcterms.referencesYan, D., Li, Y. Hoo, J., Chen, R., Dai, L., Wang, S. (2017). Defect chemistry of nonprecious-metal electrocatalysis for oxygen reactions. Adv. Mater. 29: 1606459.spa
dcterms.referencesYang, H., Liu, C., Yang, D., Zhang, H., Xi, Z. (2009). Comparative study cytotoxicity, oxadite stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J. Appl. Toxicol. 25(1): 69-78.spa
dcterms.referencesZeno, W. F., Thettle, A. S., Wang, L., Snead, W. T., Lafer, M. E., Stachowiak, J. C. (2019). Molecular mechanisms of membrane curvature sensing by a disorderd protein. J. Am. Chem. Soc. 141: 10361 10371.spa
dcterms.referencesZhang, N., Gao, C., Xiong, Y. (2019). Defect engineering: A versatile tool for tuning the activation of key molecules in photocatalytic reactions. Journal of Energy Chemistry 37: 43-57.spa
dcterms.referencesZhang, N., Li, X., Ye, H., Chen, S., Ju, H., Liu, D., Lin, Y., Ye, W., Wang, C., Xu, Q., Zhu, J., Song, L., Jiang, J., Xiong, Y. (2016). Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 138: 8928-8935.spa
dcterms.referencesZhang, S., Gao, H., Bao, G. (2015). Physical principles of nanoparticle cellular endocytosis. ACS Nano 9(9): 8655-8671.spa
dcterms.referencesZhang, Z., Yates, J. T. (2012). Band bending in semiconductor: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112: 5520-5551.spa
dcterms.referencesZhao, Y., Zhang, Z. Feng, W. (Eds) (2016). Toxicology of nanomaterials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.spa
dcterms.referencesZhu, G., Huang, Z., Xu, Z., Yan, L. T. (2018). Tailoring interfacial nanoparticle organization through entropy. Acc. Chem. Res. 51: 900-909.spa
dcterms.referencesZhu, G., Xu, Z., Yan, L. T. (2020). Entropy at bio-nano interfaces. Nano Lett. 20: 5616-5624.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1513-
dc.subject.proposalnano-biointerfazspa
dc.subject.proposalnano-biointerfaceeng
dc.subject.proposalinteracciones entrópicasspa
dc.subject.proposalentropic interactionseng
dc.subject.proposalsemiconductorspa
dc.subject.proposalsemiconductorsemiconductorsemiconductorsemiconductorsemiconductorsemiconductorsemiconductorsemiconductorsemiconductorsemiconductorsemiconductorspa
dc.subject.proposaldefectos puntualesspa
dc.subject.proposalpoint defectseng
dc.subject.proposalpatógenosspa
dc.subject.proposalpathogenseng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume45spa
dc.relation.citationstartpage1053spa
dc.relation.citationendpage1070spa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.identifier.eissn2382-4980spa
dc.relation.citationissue177spa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
7 1513 Nano biointerface.pdf3.98 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons