Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/2824 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZuluaga, Fabio-
dc.date.accessioned2024-03-04T22:00:55Z-
dc.date.available2024-03-04T22:00:55Z-
dc.date.issued2013-03-01-
dc.identifier.issn0370-3908spa
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/2824-
dc.description.abstractEn este artículo se describen, de manera resumida, algunos trabajos realizados en el laboratorio de polímeros de la Universidad del Valle sobre ácido polil-L-láctico (PLLA), un compuesto biodegradable. Específicamente se describe la síntesis de PLLA de alto y bajo peso molecular y su aplicación en la fabricación de dispositivos o de andamios (scaffolds) para el crecimiento de células óseas, ya sea en forma de bloques blandos, películas, bloques porosos y tornillos. La caracterización de los diferentes materiales se realizó por espectroscopia (resonancia magnética, RMN, e infrarrojo, IR), análisis térmico, y microscopía, por determinación de sus pesos moleculares (viscosimetría, cromatografía) y de sus propiedades mecánicas. Los implantes, las pruebas de biocompatibilidad y de crecimiento celular se realizaron en conejos y se evaluaron de forma macroscópica, y mediante pruebas histológicas.spa
dc.description.abstractThe succinct description of some works on poly(L-lactic acid) PLLA, a biodegradable compound, in the polymer laboratories of the Universidad del Valle, is the subject of this article. Specifically, the synthesis of low and high molecular weight PLA and its application in the fabrication of devices or scaffolds for bone cells growth, either in the form of soft blocks, films, porous blocks, screws, is described. The characterization of these materials was performed by spectroscopy (NMR and IR), thermal analysis, microscopy, molecular weight determination (viscometry, chromatography) and their mechanical properties. Tissue growth and biocompatibility were studied by implanting the materials in rabbits followed by macroscopic and histological evaluations.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsLa revista de la Academia se distribuye con el modelo de acceso abierto y la licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International con el fin de contribuir a la visibilidad, el acceso y la difusión de la producción científica.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleALGUNAS APLICACIONES DEL ÁCIDO POLI-L-LÁCTICOspa
dc.titleSOME APPLICATIONS OF ACID POLY-L-LACTICeng
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, maestros y comunidad científica.spa
dcterms.referencesACHMAD, F., YAMANE, K., QUAN, S., KOKUGAN, T. 2009. Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators, Chemical Engineering Journal, 151, (1-3), 15, 342-350spa
dcterms.referencesALCALDE, J.C. 2005. Trabajo de Grado, Escuela de Ingeniería de Materiales, Director: Fabio Zuluaga, Universidad del Valle, Cali.spa
dcterms.referencesBATCHELOR, ANDREW W. 2004. Service Characteristics of Biomedical Materials and Implants, Series on Biomaterials and Bioengineering, Volume 3, Singapore: Imperial College Press, 183.spa
dcterms.referencesBETANCOURT, J., 2012. Informe Joven Investigador, Director: Fabio Zuluaga, Universidad del Valle-Colciencias. CABARET O, MARTIN-VACAB, BOURISSOU D. 2004. Controlled ring-opening polymerization of lactide and glycolide, Chem. Rev.;104 (12): 6147-6176.spa
dcterms.referencesCHU, C. 1981. Hydrolytic degradation of poly (glycolic acid): tensile strength and crystallinity study, Journal of Applied Polymer. Science. 26. 1727-1734.spa
dcterms.referencesCORREA, J.P., BETANCOURT, J., 2010. Trabajo de Grado, Escuela de Ingeniería de Materiales, Director: Fabio Zuluaga, Universidad del Valle, Cali.spa
dcterms.referencesCORREA, L.S., GODOY, J., 2011. Trabajo de Grado, Escuela de Ingeniería de Materiales, Director: Fabio Zuluaga, Universidad del Valle, Cali. DARENSBOURG, D. J., KARROONNIRUN, O. 2010. Ring-Opening Polymerization of L-Lactide and ε-Caprolactone Utilizing Biocompatible Zinc Catalysts. Random Copolymerization of L-Lactide and ε-Caprolactone, Macromolecules, 43: 8880–8886.spa
dcterms.referencesESPARTERO J.L., RASHKOV I., LI S., MANOLOVA N., VERT, M. 1996. Macromolecules, 29: 3535-3539.spa
dcterms.referencesGARLOTTA, D. 2001.A Literature Review of Poly(Lactic Acid), Journal of Polymers and The Environment, 9, (2), 63-84.spa
dcterms.referencesGONZALEZ, D. 2009. Trabajo de Grado, Programa Académico de Química, Director: Fabio Zuluaga, Universidad del Valle, Cali.spa
dcterms.referencesGROOVER M. 2007. Fundamentos De Manufactura Moderna: Materiales Procesos Y Sistemas, 3a Ed. Mexico:Mcgraw-Hill,Cap 13.spa
dcterms.referencesHYON S, JAMSHID K, IKADA Y. 1997. Synthesis of polylactides with different molecular weights, Biomaterials.; 18 (22): 1503-1508.spa
dcterms.referencesKIESEWETTER, M. K., SHIN, E. J., HEDRICK, J. L., WAYMOUTH, R. M., 2010. Organocatalysis: Opportunities and Challenges for Polymer Synthesis, Macromolecules, 43: 2093-2107.spa
dcterms.referencesKNIGHT, R. I.; WILCOX, H. E.; KOROSSIS, S. A.; FISHER, J.; INGHAM, E. 2008. The use of acellular matrices for the tissue engineering of cardiac valves. Journal of Engineering in Medicin, 222(H1), 129-143.spa
dcterms.referencesLANZA, H. 2007. Principles of tissue Engineering. Elsevier.spa
dcterms.referencesLUNT, J. 1998. Large scale production, properties and commercial applications of polylactic polymers, Polymer Degradation and stability, 59, 145.spa
dcterms.referencesLUTEN, J., VAN NOSTRUM, C.F., DE SMEDT, S.T., HENNINK, W.E.. 2008. Biodegradable polymers as non-viral carriers for plas-2008. Biodegradable polymers as non-viral carriers for plasmid DNA delivery, Journal of. Controlled Release 126(2), 97-110.spa
dcterms.referencesMAGON, A., PYDA M. 2009. Study of crystalline and amorphous phases of biodegradable poly(lactic acid) by advanced thermal analysis, Polymer.; 50 (16): 3967–3973.spa
dcterms.referencesMITRAGOTRI SAMIR , LAHANN JOERG. 2009. Physical approaches to biomaterial design. Nature Materials 8, 15-23.spa
dcterms.referencesMOTTA A, DUEK E. 2006. Synthesis, characterization and “in vitro” Degradation of PLLA, Polímeros: Ciência e Tecnologia.; 16 (1): 26-32; MUELLER, R. J. 2006. Biological degradation of synthetic polyesters–enzymes as potential catalysts for polyester recycling, Proceedings of. Biochemistry., , 43: 2124-2128spa
dcterms.referencesNAMPOOTHIRI, K.M., NAIR, N.R., JHON, R.P. 2010. An overview of the recent developments in polylactide research, Bioresearch Technology 101,8493-8501.spa
dcterms.referencesNIJENKUIS AJ, GRIJPME DW, PENNINGS AJ. 1992. Lewis acid catalyzed polymerization of L-lactide. Kinetics and mechanism of the bulk polymerization, Macromolecules, 25:6419–6424.spa
dcterms.referencesPEREGO G, CELLA G, BASTIOLI C. J. 1996. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties, Journal of Applied Polymer. Science, 59 (1), 37-43.spa
dcterms.referencesPROIKAKIS, C.S, TARANTILI, P.A, ANDREOPOULOS, A.G. 2002. Synthesis and Characterization of Low Molecular Weight Polylactic Acid, Journal of Elastomers & Plastics, 34, 49-63.spa
dcterms.referencesRASAL, R. M., JANORKAR, A. V., HIRT, D. E. 2010. Poly (lactic acid) modifications, Progress in Polymers Science, 35: 338-356.spa
dcterms.referencesRYTTIN, E., NGUYEN, J., WANG, X., KISSEL, T. 2008. Biodegradable polymeric nanocarriers for pulmonary drug delivery, , Expert Opinion on Drug Delivery, 5(6), 629-639.)spa
dcterms.referencesSAVIOLI LOPEZ, M., JARDINI, A. L. 2012. MACIEL FLHO, R., Polylactic acid production for tissue engineering applications, Procedia Engineering, 42, 1402-1413.spa
dcterms.referencesSHIMAO, M. 2001. Biodegradation of Plastics, Current opinion Biotechnology, 12, 242-247spa
dcterms.referencesSHYAMROY, S. 2003. Synthesis of Biodegradable Poly (Lactic Acid) Polymers, Ph.D. Thesis, Poona (India): University of Poona.spa
dcterms.referencesSOARES, J.S., MOORE, J.E., RAJAGOPAL, K.R. 2008. Constitutive Framework for biodegradable polymers with applications to biodegradable stents, ASAIO Journal, 54(3), 295-301.spa
dcterms.referencesSOLIS, Y., BETANCUR, C., 2007. Trabajo de Grado, Escuela de Ingeniería de Materiales, Director: Fabio Zuluaga, Universidad del Valle, Cali.spa
dcterms.referencesSTARK, W.J., SCHNEIDER, O., LOHER, S.F., BRUNER, T., SIMONET, M., SCHMIDLIN, P., GRASS, R.N. 2008. Implant materials comprising biodegradable polymers and inorganic particles, Canadian Patent International Application STAÜDINGER, H., FRITSCHI, J. 1922. Helvetica Chimica Acta, 5, 785-806.spa
dcterms.referencesULERY, B. D., NAIR, L. S., LAURENCIN, C. T. 2011. Biomedical Ap-Biomedical Applications of Biodegradable Polymers, Journal Of Polymer Science Part B: Polymer Physics, 49.832–864.spa
dcterms.referencesVAZQUEZ, J.D., 2010 Trabajo de Grado, Escuela de Ingeniería de Materiales, Director: Fabio Zuluaga, Universidad del Valle, Cali.spa
dcterms.referencesWANG X, LIAO K, QUAN D, WU Q. 2005. Macromolecules.; 38: 4611-4617.spa
dcterms.referencesWANG, Y., ZERN, B., GUMERA. 2008. Biomimetic Polymers for Tissue Engineering,, C., Canadian Patent International Applicationspa
dcterms.referencesWILFRIED HAENSEL. 2011. Annual Report, Plastics Europe Association.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.37(142).2013.2539-
dc.subject.proposalPLLAspa
dc.subject.proposalPLLAeng
dc.subject.proposalImplantologíaspa
dc.subject.proposalImplantologyeng
dc.subject.proposalIngenieria de tejidosspa
dc.subject.proposalTissue engineeringeng
dc.subject.proposalBicompatibilidadspa
dc.subject.proposalBiocompatibilityeng
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume37spa
dc.relation.citationstartpage1spa
dc.relation.citationendpage129spa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.identifier.eissn2382-4980spa
dc.relation.citationissue142spa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
9-Medio Ambiental Algunas aplicaciones del ácido.pdf3.31 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons