Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/793 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNieto, Carlos-
dc.contributor.authorRodríguez, Yeinzon-
dc.date.accessioned2021-10-15T15:02:30Z-
dc.date.available2021-10-15T15:02:30Z-
dc.date.issued2014-03-01-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/793-
dc.description.abstractSe encuentra en la literatura científica que gran parte de los modelos inflacionarios carecen de soportes observacionales o conceptuales. Es así como recientes observaciones sobre una posible dirección privilegiada en el universo implican que no es conveniente tomar campos escalares como generadores de inflación. Por otra parte, los recientes modelos inflacionarios que emplean campos vectoriales requieren modificar la gravedad o las condiciones muy finas para su apropiado comportamiento; además, carecen de naturalidad y no presentan una de las características más importantes de las teorías de la física moderna: la existencia de simetrías internas. En este artículo se presenta un modelo inflacionario vectorial enmarcado en una teoría de gauge SU(2) compuesto por tres campos vectoriales sobre los cuales se hace una suposición bien fundamentada con respecto a su dirección, su norma, y su dependencia temporal. Lo anterior permite obtener una era de inflación isótropa en un fondo rotacionalmente invariante si se tiene en cuenta la relación homomórfica entre los grupos SU(2) y O(3). Se estudia, en este escenario, la dinámica de los campos vectoriales y las condiciones para tener expansión acelerada; además, se analiza la evolución del sistema en el régimen de rodadura lenta y se obtienen soluciones numéricas de las ecuaciones de movimiento. Debido a la naturalidad del modelo, los resultados numéricos observados y la generalidad de la suposición propuesta, se concluye que este tipo de inflación representa de manera adecuada el comportamiento del universo primordial a la luz de las más recientes observaciones.spa
dc.description.abstractAccording to the literature, there is a significant number of inflationary models that lack observational and conceptual support. Such is the case with recent observations regarding a possible preferred direction in the universe, which imply that scalar fields are not suitable as generators of inflation. On the other hand, recent inflationary models that employ vector fields require a modification of gravity and/or fine-tuning in order to have the appropriate behaviour; besides, they lack naturalness and do not exhibit one of the most important properties of theories in modern physics: the existence of internal symmetries. In this paper, we present a vector inflationary model embodied in a SU(2) gauge theory composed of three vector fields over which we make a well supported assumption about their direction, their norm, and their time dependence. Such an assumption allows us to obtain isotropic inflation in a rotationally invariant background if we take into account the homomorphic relation between SU(2) and O(3) groups. In this scenario, we study the dynamics of the vector fields and the conditions to obtain accelerated expansion; we also analyze the evolution of the system in the slow-roll regime and obtain numerical solutions for the equations of motion. Due to the naturalness of the model, the observed numerical results and the generality of the proposed assumption, we conclude that this type of inflation represents well the behaviour of the primordial universe in view of the most recent observations.eng
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleInflación vectorial en el marco de las teorías de gauge no abelianasspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesAbbott L., Farhi E., Wise M. B., 1982. Particle production in the new inflationary cosmology. Phys. Lett. 117B: 29.spa
dcterms.referencesAlbrecht A., Steinhardt P. J., Turner M. S., Wilczek F., 1982. Reheating an inflationary universe. Phys. Rev. Lett. 48: 1437.spa
dcterms.referencesAllahverdi R., Brandenberger R., Cyr-Racine F.-Y., Mazumdar A., 2010. Reheating in inflationary cosmology: Theory and applications. Ann. Rev. Nucl. Part. Sci. 60: 27.spa
dcterms.referencesArmendáriz-Picón, C., 2007. Creating statistically anisotropic and inhomogeneous perturbations. JCAP 0709: 014.spa
dcterms.referencesAxelsson, M., et al., 2013. Directional dependence of ΛCDM cosmological parameters. Astrophys. J. 773: L3.spa
dcterms.referencesBICEP2 Collaboration, Ade P. A. R., et al., 2014. BICEP2 I: Detection of B-mode polarization at degree angular scales.arXiv:1403.3985 [astro-ph.CO].spa
dcterms.referencesCai R.-G., Ma Y.-Z., Tang B., Tuo Z.-L. 2013. Constraining the anisotropic expansion of the Universe. Phys. Rev. D 87: 123522.spa
dcterms.referencesCampanelli P., Cea G., Fogli G., Marrone A. 2011. Testing the isotropy of the Universe with type Ia supernovae. Phys. Rev. D 83: 103503.spa
dcterms.referencesDine M. 2007. Supersymmetry and string theory: Beyond the standard model. Cambridge University Press, Cambridge - UK.spa
dcterms.referencesGolovnev A., 2010. Linear perturbations in vector inflation and stability issues. Phys. Rev. D 81: 023514.Golovnev A., 2010. Linear perturbations in vector inflation and stability issues. Phys. Rev. D 81: 023514.spa
dcterms.referencesGolovnev A., 2011. On cosmic inflation in vector field theories. Class. Quant. Grav 28: 245018.spa
dcterms.referencesGolovnev A., Mukhanov V., Vanchurin V. 2008.Vector inflation. JCAP 0806: 009.spa
dcterms.referencesGreene P. B., Kofman L., Linde A. D., Starobinsky, A. A. 1997. Structure of resonance in preheating after inflation. Phys. Rev. D 56: 6175.spa
dcterms.referencesGroeneboom N. E., Ackerman L., Wehus I. K., Eriksen H. K. 2010. Bayesian analysis of an anisotropic universe model: Systematics and polarization, Astrophys. J. 722: 452.spa
dcterms.referencesGroeneboom N. E., Eriksen H. K. 2009. Bayesian analysis of sparse anisotropic universe models and application to the 5-yr WMAP data. Astrophys. J. 690: 1807.spa
dcterms.referencesHimmetoglu B., Contaldi C. R., Peloso M. 2009a. Instability of the Ackerman-Carroll-Wise model, and problems with massive vectors during inflation. Phys. Rev. D 79: 063517.spa
dcterms.referencesHimmetoglu B., Contaldi C. R., Peloso M., 2009b.Instability of anisotropic cosmological solutions supported by vector fields. Phys. Rev. Lett. 102: 111301.spa
dcterms.referencesHimmetoglu B., Contaldi C. R., Peloso M. 2009c.Ghost instabilities of cosmological models with vector fields non-minimally coupled to the curvature. Phys. Rev. D 80: 123530.spa
dcterms.referencesKalus B., Schwarz D. J., Seikel M., Wiegand A. 2013. Constraints on anisotropic cosmic expansion from supernovae. Astron. Astrophys. 553: A56.spa
dcterms.referencesKane G. L. 1993. Modern elementary particle physics: The fundamental particles and forces. Addison-Wesley Press, Boston - USA.spa
dcterms.referencesKim J., Komatsu E. 2013. Limits on anisotropic inflation from the Planck data. Phys. Rev. D 88: 101301.spa
dcterms.referencesKim C. W., Murphy P. 1985. On the minimum amount of inflation to solve the flatness and horizon problems. Phys. Rev. D 32: 3303.spa
dcterms.referencesLyth D. H., Liddle A. R. 2009. The primordial density perturbation: Cosmology, inflation, and the origin of structure. Cambridge University Press, Cambridge - UK.spa
dcterms.referencesMaleknejad A., Sheikh-Jabbari M. M. 2011. Non-abelian gauge field inflation. Phys. Rev. D 84: 043515.spa
dcterms.referencesMaleknejad A., Sheikh-Jabbari M. M. 2013. Gauge-flation: Inflation from non-abelian gauge fields. Phys. Lett. B 723: 224.spa
dcterms.referencesMaleknejad A., Sheikh-Jabbari M. M., Soda J. 2012. Gauge-flation and cosmic no-hair conjecture. JCAP 1201: 016.spa
dcterms.referencesMaleknejad A., Sheikh-Jabbari M. M., Soda J. 2012. Gauge fields and inflation. Phys. Rep. 528: 161.spa
dcterms.referencesMukhanov V. 2005. Physical foundations of cosmology. Cambridge University Press, Cambridge - UK.spa
dcterms.referencesPaci F., et al. 2013. Hemispherical power asymmetries in the WMAP 7-year low-resolution temperature and polarization maps. arXiv:1301.5195 [astro-ph.CO].spa
dcterms.referencesPenzias A. A., Wilson R. W. 1965. A measurement of excess antenna temperature at 4080 −Mc/s, Astrophys. J. 142: 419.spa
dcterms.referencesPlanck Collaboration, Ade, et al., 2013a. Planck 2013 results. XVI. Cosmological parameters. arXiv:1303.5076 [astro-ph.CO].spa
dcterms.referencesPlanck Collaboration, Ade, et al., 2013b. Planck 2013 results. XXIII. Isotropy and statistics from the CMB. arXiv:1303.5083 [astro-ph.CO].spa
dcterms.referencesRamazanov S. R., Rubtsov G. 2014. Constraining anisotropic models of the early Universe with WMAP9 data. Phys. Rev. D 89: 043517.spa
dcterms.referencesRubakov V. A. 1982. Graviton creation in the inflationary universe and the grand unification scale. Phys. Lett. 115B: 189.spa
dcterms.referencesRyder L. H. 1985. Quantum field theory. Cambridge University Press, Cambridge - UK.spa
dcterms.referencesSingal A. K. 2013. Is there a violation of the Copernican principle in radio sky? arXiv:1305.4134 [astro-ph.CO].spa
dcterms.referencesStarobinsky A. A. 1980. A new type of isotropic cosmological models without singularity. Phys. Lett. 91B: 99.spa
dcterms.referencesStarobinsky A. A. 1982. Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. 117B: 175.spa
dcterms.referencesWeinberg S. 1996. The quantum theory of fields, Volume 2: Modern applications. Cambridge University Press, Cambridge - UK.spa
dcterms.referencesWeinberg S. 2008. Cosmology. Oxford University Press, Oxford - UK.spa
dcterms.referencesWMAP Collaboration, Hinshaw, G., et al., 2013. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) obser-vations: Cosmological parameter results. Astrophys. J. Suppl. Ser. 208: 19.spa
dcterms.referencesZhao W., Wu P., Zhang Y. 2013. Anisotropy of cosmic acceleration. Int. J. Mod. Phys. D 22: 1350060.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.36-
dc.subject.proposalParadigma inflacionariospa
dc.subject.proposalInflationary paradigmeng
dc.subject.proposalCampos vectorialesspa
dc.subject.proposalVector fieldseng
dc.subject.proposalTeorías de gauge no abelianasspa
dc.subject.proposalNon-Abelian gauge field theorieseng
dc.subject.proposalInflación del tipo rodadura lentaspa
dc.subject.proposalSlow-roll inflationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume38spa
dc.relation.citationstartpage7spa
dc.relation.citationendpage16spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue146spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
2. Inflación vectorial en el marco de las teorías de gauge.pdfCiencias físicas y matemáticas852.93 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons