Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/827 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRoa Rojas, Jairo-
dc.contributor.authorCardona Vásquez, Jorge A.-
dc.contributor.authorLandínez Téllez, David-
dc.date.accessioned2021-10-15T17:07:49Z-
dc.date.available2021-10-15T17:07:49Z-
dc.date.issued2014-11-28-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/827-
dc.description.abstractSystematic experiments of high-field (up to 50 kOe) fluctuation magnetoconductivity and Hall magnetoresistivity in Hg1-x Rex Ba2 CaCu3O8+d (x=0.18) polycrystalline samples growth by means the quartz tube technique are reported. The analysis of the experimental data was performed by using the recognized Kouvel-Fisher method, which is frequently applied to study of critical phenomena. Very close to the critical temperature TC, a genuinely critical regime of fluctuations characterized by the critical exponent λc =0.32±0.01 was identified in absence of magnetic fields. This result is consistent with the full dynamic 3D-XY universality class predicted by the model E of Hohenberg-Halperin with a dynamic critical exponent z = 3/2. The genuine critical regime become be unstable on the application of external magnetic fields H≈0.1 kOe. Near above the critical temperature TC, the determined exponent λG3=0.52±0.02 was interpreted as corresponding to homogeneous fluctuations, which develop in a space with three-dimensional geometry. This region is destroyed upon the application of magnetic fields above 0.5 kOe. Increasing the temperature, evidences of a homogeneous two-dimensional behavior are observed by means the identification of a λG2=1.02±0.04. Applied fields H>20 kOe destroy this fluctuation regime. Far above TC , effects of disorder and planar anisotropy produce a fluctuation spectrum characterized by a fractal topology with a critical exponent λG2-G1=1.32±0.04. At last, very far TC, a temperature region with λG1=1.52±0.04 was experimentally identified. This corresponds to the confinement of the quasi-particles into the Lowest-Landau-Level, due to the quantization of the electronic states around the axe of application of the external field. Measurements of Hall were performed. In the normal phase, the Hall resistivity is hole-like and inversely proportional to the temperature. In the mixed phase and when the applied field is below μ0H = 2 T, the Hall resistivity shows a double sign reversal. For fields above 2 T, the Hall resistivity remains positive, although qualitatively showing the trends observed at low fields. We attribute this behavior to two independent contributions with opposite sign. A negative term due to thermal fluctuations is relevant near TC, whereas a positive contribution related to vortex motion dominates at lower temperatures. Near the zero resistance state, the Hall resistivity varies as a power law of the longitudinal resistivity, with a field independent exponent β=1.41. PACS: 74.40.+k; 74.25.Bt; 74.60.Ec; 74.72.Bk.eng
dc.description.abstractEn el presente trabajo reportamos experimentos sistemáticos de fluctuaciones en la magnetoconductividad bajo la aplicación de altos campos magnéticos (hasta 50 kOe) y respuesta Hall en muestras policristalinas de Hg1- x Rex Ba2 CaCu3 O8+d (x=0.18) crecidas mediante la técnica del tubo de cuarzo. Los análisis experimentales fueron realizados a través del método de Kouvel-Fisher, el cual es frecuente utilizado en estudios de fenómenos críticos. Muy cerca de la temperatura crítica TC y en ausencia de campo magnético fue identificado un régimen de fluctuaciones genuinamente críticas caracterizado por el exponente λc =0.32±0.01. Este resultado es consistente con el modelo 3D-XY cuya universalidad dinámica es predicha por el modelo E of Hohenberg-Halperin con un exponente crítico dinámico z=3/2. Este régimen se torna inestable bajo la aplicación de campos magnéticos superiores a H≈0.1 kOe. Cerca y arriba de TC, se observe un exponente λG3=0.52±0.02 que fue interpretado como correspondiente a fluctuaciones homogéneas desarrollándose en un espacio de geometría tridimensional. Esta región fue destruida cuando campos magnéticos superiores a H=0.5 kOe fueron aplicados. Al aumentar la temperatura, se evidenció un comportamiento de fluctuaciones homogéneas bidimensionales identificadas mediante el exponente λG2=1.02±0.04. Este régimen desapareció al aplicar campos magnéticos H>20 kOe. Lejos y arriba de TC, los efectos de desorden de anisotropía planar produjeron un espectro de fluctuaciones caracterizados por una topología fractal con un exponente crítico λG2-G1=1.32±0.04. Muy lejos en temperatura y arriba de TC, se identificó un régimen de fluctuaciones con exponente λG1=1.52±0.04, el cual fue interpretado como relativo al confinamiento de cuasipartículas en el nivel más bajo de Landau, debido a la cuantización de estados electrónicos alrededor del eje de aplicación del campo magnético externo. Por otro lado, se efectuaron medidas de respuesta Hall. En la fase normal, la resistividad Hall fue de tipo hueco e inversamente proporcional a la temperatura. En el estado mixto y bajo la aplicación de un campo magnético inferior a 20 kOe la resistividad Hall mostró una doble inversión de signo. Para campos por encima de este valor, la resistividad Hall permaneció positiva pero conservando la misma forma cualitativa observada a bajos campos. Este comportamiento fue atribuido a la existencia de dos contribuciones independientes de signo opuesto: ana negativa debida a fluctuaciones térmicas cerca de TC, y otra positiva debida a movimiento de vórtices que domina a menores temperaturas. Cerca al estado en que la resistividad se anula, la respuesta Hall varía en forma de una función potencial de la respuesta longitudinal, con un exponente independiente del campo aplicado β=1.41. PACS: 74.40.+k; 74.25.Bt; 74.60.Ec; 74.72.Bkspa
dc.format.extent15 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleHigh-field fluctuation magnetoconductivity and Hall reversal response in the Hg(Re)Ba2Ca2Cu3O8+δ superconductorspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesAbrikosov, A.A. (1988). Fundamentals of the theory of metals.Groningen: North-Holland, p. 120-135.spa
dcterms.referencesAlexander, S. and Orbach, R. (1982). Density of states on fractals: “fractons”. Journal Physique Letters 43, L625.spa
dcterms.referencesAlexander, S., Laermans, C., Orbach, R. and Rosenberg, H.M.(1983). Fracton interpretation of vibrational properties of cross-linked polymers, glasses, and irradiated quartz. Physical Review B 28, 4615.spa
dcterms.referencesAmbegaokar, V., Halperin, B.I., Nelson, D.R. and Siggia, E.D.(1980). Dynamics of superfluid films. Physical Review B 21, 1806spa
dcterms.referencesAnderson P. W. (1991). Comment on ‘‘Anomalous spectral weight transfer at the superconducting transition of Bi2Sr2CaCu2O8+δ’’. Physical Review Letters 67, 660.spa
dcterms.referencesAnderson, P. W. and Kim, Y. B. (1964). Hard superconductivity: theory of the motion of Abrikosov flux line, Rev. Mod. Phys. 36, 39.spa
dcterms.referencesArtemenko, S.N., Gorlova, I.G. and Latyshev, Y.I. (1989). Change in the sign of the Hall effect in a superconducting transition in Bi2Sr2CaCu2Ox single crystals. JETP Letters 49, 403.spa
dcterms.referencesArtemenko, S.N., Gorlova, I.G. and Latyshev, Y.I. (1989). Vortex motion and kosterlitz-thouless transition in superconducting single crystals Bi2Sr2CaCu2Ox. Physics Letters A 138, 428spa
dcterms.referencesAslamazov, L.G. and Larkin, A.I. (1968). Effect of Fluctuations on the Properties of a Superconductor Above the Critical Temperature. Soviet Physics Solid State 10 (4), 875-880spa
dcterms.referencesBardeen, J. and Stephen, M.J. (1965). Theory of the Motion of Vortices in Superconductors. Physical Review 140, 1197.spa
dcterms.referencesBergmann, G. (1969). Landau level superconducting fluctuations of type-II superconductors in a high magnetic field, Z. Phys. B 255, 430.spa
dcterms.referencesChar, K. and Kapitulnik, A. (1988). Fluctuation conductivity in inhomogeneous superconductors. Z. Phys. B 72, 253.spa
dcterms.referencesChmaissen, O., Huang, Q., Antipov, E.V, Putilin, S.N., Marezio, M., Loureiro, S.M., Capponi, J.J., Tholence, J.L. and Santoro, A. (1993). Neutron powder diffraction study at room temperature and at 10K of the crystal structure of the 133K superconductor HgBa2Ca2Cu3O8+δ. Physica C, 217, 265.spa
dcterms.referencesDi Castro, C., Castellani, C., Raimondi, N. and Varlamov, A.(1990). Superconductive fluctuations in the density of states and tunneling resistance in high-Tc superconductors. Physical Review B 42, 10211.spa
dcterms.referencesEbner, C. and Stroud, D. (1985). Diamagnetic susceptibility of superconducting clusters: Spin-glass behavior. Physical Review B 31, 165.spa
dcterms.referencesFabris, F.W., Roa-Rojas, J. and Pureur, P.(2001). Magnetotransport properties and the irreversibility line in ceramic DyBa2 Cu3O7–δ. Physica C 354, 304–308spa
dcterms.referencesFeigel’man, M.V., Geshkenbein, V.B., Larkin, A.I. and Vinokur, V.M. (1995). Sign change of the flux-flow Hall effect in HTSC. JETP Letters 62, 834-840.spa
dcterms.referencesFisher, D.S., Fisher, M.P.A. and Huse, D.A. (1991). Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors. Physical Review B 43, 130spa
dcterms.referencesFreimuth, A., Hohn, C. and Galffy, M. (1991). Sign change of the flux-flow Hall resistance in high-Tc superconductors. Physical Review B 44, 10396.spa
dcterms.referencesFriederich, A. (1976). Thesis Universit ́e de Paris-Sud, Centre d’Ordayspa
dcterms.referencesGalffy, M. and Zirngiebl, E. (1988). Hall-effect of bulk YBa2 Cu3O7−δ. Solid State Communications. 68, 929-933spa
dcterms.referencesGerber, A., Grenet, T., Cyrot, M. and Beille, J. (1990). Double-peak superconducting transition in granular L-M-Cu-O (L=Pr,Nd,Sm,Eu,D; M=Ce,Th) superconductors. Physical Review Letters 65, 3201.spa
dcterms.referencesGor’kov, L.P. (1958). On the energy spectrum of superconductors. Soviet Physics JETP 7, 505 – 508.spa
dcterms.referencesGor’kov, L.P. (1959). Microscopic derivation of the ginzburg-landau equations in the theory of superconductivity, Soviet Physics JETP 9, 1364 – 1367spa
dcterms.referencesGor’kov, L.P. (1960). Theory of superconducting alloys in a strong magnetic field near the critical temperature. Soviet Physics JETP 10, 998.spa
dcterms.referencesHagen, S. J., Smith, A. W., Rajeswari, M., Peng, J. L., Li, Z. Y., Greene, R. L., Mao, S. N., Xi, X. X., Bhattacharya, S., Qi Li, and Lobb, C. J. (1993). Anomalous flux-flow Hall effect: Nd1.85Ce0.15CuO4-y and evidence for vortex dynamics. Physical Review B 47, 1064.spa
dcterms.referencesHagen, S.J., Lobb, C.J., Greene, R.L. and Eddy, M. (1991). Flux-flow Hall effect in superconducting Tl2Ba2CaCu2O8films. Physical Review B 43, 6246spa
dcterms.referencesHohenberg, P.C. and Halperin, B.I. (1977). Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435spa
dcterms.referencesHoughton, A., Pelkovits, R.A. and Sudbf, A. (1989). Flux lattice melting in high-Tc superconductorsPhysical Review B 40, 6763.spa
dcterms.referencesIkeda, R., Ohmi, T., Tsuneto, T. (1989). Renormalized fluctuation theory of resistive transition in high-temperature super-conductors under magnetic field. Journal of the Physical Society of Japan. 58, 1377 – 1386.spa
dcterms.referencesJurelo, A.R., Castillo, I.A., Roa-Rojas, J., Ferreira, L.M., Ghivelder, L., Pureur, P, Rodrigues Jr., P. (1999). Coherence transition in granular high temperature super-conductors. Physica C 311, 133.spa
dcterms.referencesKIM, D. H. and Trochet, M. D. (1992). Scaling behavior of fluc-tuation conductivity of high-temperature superconductors in a magnetic field, Physical Review B 45, 10801spa
dcterms.referencesKoch, R.H., Foglietti, V. and Fisher, M.P.A. (1990). Experimental evidence for vortex-glass superconductivity in YBa-Cu- O. Physical Review Letters 64, 2586.spa
dcterms.referencesKoch, R.H., Foglietti, V. and Gallagher, W.J. (1989). Experimental evidence for vortex-glass superconductivity in Y-Ba-Cu-O. Physical Review Letters 63, 1511.spa
dcterms.referencesLang, W., Heine, G., Schwab, P., Wang X. Z. and Bäuerle, D.(1994). Paraconductivity and excess Hall effect in epitaxial YBa2Cu3O7 films induced by superconducting fluctuations. Physical Reviev B 49, 4209.spa
dcterms.referencesLawrence, W.E. and Doniach, S. (1971). KANDO, E. (Ed.) Proceedings of 12th International Conference on Low Temperature Physics. Kyoto: Academic Press of Japan, 1971. p. 361-362spa
dcterms.referencesLidmar, J., Wallin, M., Wengel, C., Girvin, S.M., Young, A.P.(1998). Critical exponents from field theory. Physical Review B 21, 3976.spa
dcterms.referencesLiu, W., Clinton, T.W., Smith, A.W. and Lobb, C.J. (1997). Hall-conductivity sign reversal and fluctuations in YBa2Cu3O7-δfilms. Physical Review B 55, 11802spa
dcterms.referencesLobb, C.J. (1987). Critical fluctuations in high-Tc superconductors. Physical Review B 36, 3930.spa
dcterms.referencesMaki, K. and Thompson, R.S. (1989). Fluctuation conductivity of high-Tc superconductors. Physical Review B 39, 2767.spa
dcterms.referencesMatsushita, T. (1993). On the origin of the irreversibility line in superconductors Depinning or melting of fluxoids. Physica C 214, 100.spa
dcterms.referencesMorgenstern, I., Müller, K. A. and Bednorz, J. G. (1988). Glass behavior of high-Tc superconductors. Physica C 153/155, 59 – 62.spa
dcterms.referencesPureur, P., Costa, R. M., Rodrigues Jr., P., Kunzler, J. V., Schaf, J., Ghivelder, L., Campá, J. A. and Rasines, I.(1994). Critical and Gaussian conductivity fluctuations in YBa2Cu3O7−δ and Bi2Sr2CaCu2O8. Physica C 235/240, 1939-1940.spa
dcterms.referencesPureur, P., Menegotto Costa, R., Rodrigues, Jr., P., Schaf, J. and J. V. Kunzler, (1993). Critical and Gaussian conductivity fluctuations in YBa2Cu3O7-δ. Physical Review B 47, 11420.spa
dcterms.referencesRice, J.P., Rigakis, N., Ginsberg, D.M. and Mochel, J.M. (1992). Sign reversal of the Hall effect below Tc in untwinned single-crystal YBa2Cu3O7-δ. Physical Review B 46, 11050.spa
dcterms.referencesRoa-Rojas, J. (2002). Evidence of two-dimensional gauge-glass behavior near the coherence transition of DyBa2Cu3O7-δultra-thin films. Modern Physics Letters B 16 1061.spa
dcterms.referencesRoa-Rojas, J., Jurelo, A.R., Menegotto Costa, R., Mendonça Ferreira, L., Pureur, P., Orlando, M.T.D., Prieto, P., Nieva, G., (2000). Fluctuation conductivity and the dynamical universality class of the superconducting transition in the high-Tc cuprates. Physica C. 341-348, 1911 – 1912.spa
dcterms.referencesRoa-Rojas, J., Menegotto Costa, R., Pureur, P. and Prieto, P. (2000). Pairing transition, coherence transition, and the irreversibility line in granular GdBa2Cu3O7-δ. Physical Review B 61, 12457spa
dcterms.referencesRoa-Rojas, J., Pureur, P., Mendonça-Ferreira, L., Orlando, M.T.D., Baggio-Saitovitch, E., (2001). Hall effect and longitudinal conductivity in a Hg0.82Re0.18Ba2Ca2Cu3O8+δsuperconductor. Superconductor Science and Technology. 14, 898.spa
dcterms.referencesRoa-Rojas, J., Pureur, P., Orlando, M.T.D., Baggio-Saitovitch, E. (2000). Hall effect in a Hg(Re)-1223 superconductor. Physica C 341-348, 1043.spa
dcterms.referencesRodrigues Jr., P., Schaf, J. and Pureur, P. (1994). Field and oxygen dependence of the magnetic irreversibility line in YBa2Cu3O7-δ. Physical Review B 49, 15292.spa
dcterms.referencesRosenblatt, J., Raboutou, A., Peyral, P. and Lebeau, C. (1990). Intragranular and intergranular transitions in Y-Ba-Cu-O ceramics. Rev. Physique Appl. 25, 73spa
dcterms.referencesSalamon, M. B., Shi, J., Oyerend, N. and Howson, M. A. (1993). XY-like critical behavior of the thermodynamic and transport properties of YBa2Cu3O7-x in magnetic fields near Tc. Physical Review B 47, 5520.spa
dcterms.referencesShen L.J., Lam C.C., Li J.Q. (1998). Thermodynamic fluctuation under high pressure in Hg-1223 superconductors. Superconducting Science and Technology 11, 1277.spa
dcterms.referencesin, A., Cunha, A.G., Calleja, A., Orlando, M.T.D, Emmerich, F.G., Baggio-Saitovitch, E., Segarra, M., Piñol, S. and Obradors, X. (1999). Influence of precursor oxygen stoichiometry on the formation of Hg, Re-1223 superconductors. Superconductor Science and Technology 12, 120.spa
dcterms.referencesSin, A., Cunha, A.G., Calleja, A., Orlando, M.T.D, Emmerich, F.G., Baggio-Saitovitch, E., Segarra, M., Piñol, S. and Obradors, X. (1998). Pressure-Controlled Synthesis of the Hg0.82Re0.18Ba2Ca2Cu8+d Superconductor, Advanced Materials 10, 1126spa
dcterms.referencesStanley, H.E., (1971). Introduction to phase transitions and critical phenomena. Oxford: Clarendon Press, p.p. 180.spa
dcterms.referencesTinkham, M. (1975). Introduction to superconductivity. Florida: Krieger, p.p. 230-257.spa
dcterms.referencesUsui, M., Ogaswara, T., Yasukochi, K., Tomoda, S. (1969). Magnetization, Flux Flow Resistance and Hall Effect in Superconducting Vanadium. Journal of the Physical Society of Japan 27, 574.spa
dcterms.referencesVarlamov, A.A. and Ausloos, M. (1996). Nato advanced research workshop on fluctuation phenomena in high critical temperature superconducting ceramics, Trieste. Edited by Ausloos, M. and Varlamov, A.A. Dordrecht: Kluwer Academic Publishers, (1997). p.p. 3-41.spa
dcterms.referencesWang, Z.D., Dong, J. and Ting, C.S. (1994). Unified theory of mixed state Hall effect in type-II superconductors: Scaling behavior and sign reversal. Physical Review Letters 72, 3875spa
dcterms.referencesYeshurun, Y. and Malozemoff, A.P. (1988). Giant Flux Creep and Irreversibility in an Y-Ba-Cu-O Crystal: An Alternative to the Superconducting-Glass Model. Physical Review Letters 60, 2202spa
dcterms.referencesZavaritsky, N.V., Samoilov, A.V. and Yurgens, A.A. (1991). Transport coefficients and flux motion in Bi2Sr2CaCu2Oxsingle crystals. Physica C 180, 417.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.154-
dc.subject.proposalFluctuaciones en la conductividadspa
dc.subject.proposalFluctuation conductivityeng
dc.subject.proposalFenómenos críticosspa
dc.subject.proposalCritical phenomenaeng
dc.subject.proposalEstado mixtospa
dc.subject.proposalMixed stateeng
dc.subject.proposalSuperconductividad de alta temperaturaspa
dc.subject.proposalHigh-temperature superconductivityeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume38spa
dc.relation.citationstartpage56spa
dc.relation.citationendpage70spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissueSuplementospa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
4. High-field fluctuation magnetoconductivity and Hall reversal response in the Hg(Re)Ba2Ca2Cu3O8+δ superconductor.pdfCiencias físicas928.47 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons