Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/834 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMartínez O., Fernando-
dc.date.accessioned2021-10-15T17:12:41Z-
dc.date.available2021-10-15T17:12:41Z-
dc.date.issued2014-11-28-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/834-
dc.description.abstractSe describe métodos para la funcionalización covalente y no covalente de nanotubos de carbono de pared simple (NTC) con ácido fólico, así como su caracterización espectroscópica. La irradiación de soluciones acuosas de NTC-AF con IR genera un efecto de calentamiento dependiente de la concentración, de la potencia del haz y del tipo de interacción ácido fólico- TC; los experimentos de control indican que el aumento de la temperatura se debe solo al NTC. Los estudios biológicos preliminares indican una internalización del bioconjugado en células THP-1 y en las infectadas con parásitos de Leishmania, observándose que el efecto térmico generado por la iluminación con IR puede disminuir la población de las células infectadas.spa
dc.description.abstractMethods for covalent and non-covalent functionalization of single-walled carbon nanotubes (CNTs) with folic acid and their spectroscopic characterization are described. The irradiation of NTC-AF aqueous solutions with IR generates a heating effect that it dependent on the concentration of solution, the beam power and the type of interaction between folic acid and NTC. The control experiments show that the increase in temperature is only due to NTC. Preliminary biological studies indicate an internalization of the bioconjugate in THP-1 and infected cells with Leishmania parasites, showing that the thermal effect generated by the IR illumination can reduce the population of infected cells.spa
dc.format.extent15 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleSuplemento Calentamiento por Fotoactivación de NanoTubos de Carbono de pared simple Funcionalizados con Ácido Fólico (NTC-AF)spa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesAhmad A., Kurkina T., Kern K. and Balasubramanian K., 2009. Applications of the Static Quenching of Rhodamine B by Carbon Nanotubes. Chem. Phys. Chem. 10:2251–2255.spa
dcterms.referencesAtthal S., Thiruvengadathan R., Regev O., 2006. Determination of the concentration of single walled carbón nanotubes in aqueous dispersión using UV-Vis absorption spectroscopy. Anal. Chem. 78 (23):8098-8104.spa
dcterms.referencesAyala B, E., Peña B.Y. G., 2013. Funcionalización covalente de nanotubos de carbono de pared simple con ácido fólico y evaluación de su efecto térmico, Trabajo de grado, Director Fernando Martínez O., Escuela de Química, Facultad de Ciencias, UIS.spa
dcterms.referencesAyala B. E., Peña Y. G., Barbosa O., Torres R., Martínez O. F., 2013. Evaluación del efecto térmico de nanotubos de carbono de pared simple funcionalizados con ácido fólico. Rev. Invest. Univ. Quindío. 1 (24): 107-111.spa
dcterms.referencesBandara N. A., Hansen M. J., and Low P. S., 2014. Effect of Receptor Occupancy on Folate Receptor Internalization. Molecular. Pharmaceutics 11 (3): 1007−1013.spa
dcterms.referencesBoca-Farcau S., Potara M., Simon T., Juhem A., Baldeck P., and Astilean S., 2014. Folic Acid-Conjugated, SERS-Labeled Silver Nanotriangles for Multimodal Detection and Targeted Photothermal Treatment on Human Ovarian Cancer Cells. Molecular. Pharmaceutics 11 (2): 391–399.spa
dcterms.referencesBurkea A., Ding X., Singh R., Kraft R. A., Levi-Polyachenko N., Rylander M. N., Szot C., Buchanan C., Whitney J., Fisher J., Hatcher H. C., D’Agostino R., Jr., Kock N. D., Ajayan P. M., Carroll D. L., Akman S., Torti F. M., and Torti S. V., 2009. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. PNAS 106 (31): 12897–12902.spa
dcterms.referencesBurlaka A., Lukin S., Prylutska S., Remeniak O., Prylutskyy Y., Shuba M., Maksimenko S., Ritter U., Scharff P., 2010. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies. Exp. Oncol. 32 (1): 48-50.spa
dcterms.referencesCastillo J. J., Torres M. H., Molina D. R., Castillo-León J., Svendsen W. E., Escobar P., Martínez O. F., 2012. Monitoring the functionalization of single-walled carbon nanotubes with chitosan and folic acid by two-dimensional diffusion-ordered NMR spectroscopy. Carbon 50 (8): 2691–2697.spa
dcterms.referencesCastillo J.J., Novoa L.V., Martínez F., Escobar P., 2011. Carbon nanotubes-chitosan in HOS and THP-1 cells. Rev. Univ. Ind. Santander. Salud 43 (1): 21–6.spa
dcterms.referencesCastillo, J. J., Rindzevicius T., Novoa L. V., Svendsen W. E., Rozlosnik N., Boisen A., Escobar P., Martínez F. and Castillo-Léon J., 2013. Non-covalent conjugates of single-walled carbón nanotubes and folic acid for interaction with cells over-expressing folate receptors. J. Mater. Chem. B. 1: 1475-1481.spa
dcterms.referencesCastillo J. J., Rozo C. E., Castillo-León J., Rindzevicius T., Svendsen W. E., Rozlosnik N., Boisen A., Martínez O. F., 2013. Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid. Chemical Physics Letters 564: 60–64.spa
dcterms.referencesCastillo, John, 2013. Diseño y Preparación de Nanocompuestos Funcionalizados con Ácido Fólico y sus Aplicaciones Biomédicas, tesis doctoral en química, escuela de Química, dirigida por Patricia Escobar R. y Fernando Martínez O., UIS, enero.spa
dcterms.referencesChakravarty P., Marches R., Zimmerman N. S., Swafford A. D.-E., Bajaj P., I. H. Musselman, P. Pantano, Draper R. K., and Vitetta E. S., 2008. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. PNAS 105 (25): 8697– 8702spa
dcterms.referencesCohen Y., Avram L., and Frish L., 2005. Diffusion NMR Spec-troscopy in Supramolecular and Combinatorial Chemistry: An Old Parameter—New Insights, Angew. Chem. Int. Ed. 44 (4): 520– 554.spa
dcterms.referencesCho E. S., S. Hong W. and Jo W. H., 2008. A New pH Sensor Using the Fluorescence Quenching of Carbon Nanotubes. Macromol. Rapid Commun. 29 (22): 1798–1803.spa
dcterms.referencesChen H., Chi X., Li B., Zhang M., Ma Y., Achilefu S. and Gu Y., 2014. Drug loaded multilayered gold nanorods for combined photothermal and chemotherapy. |Biomater. Sci., 2: 996–1006.spa
dcterms.referencesChou H.-T., Wang T.-P., Lee Y., Taia N.-H., Chang H.-Y., 2013. Photothermal effects of multi-walled carbon nanotubes on the viability of BT-474 cancer cells. Materials Science and Engineering C 33 (2): 989–995.spa
dcterms.referencesDresselhauss M., Dresselhaus G., Jorio A., Filho A., Pimenta A., Saito R., 2002. Single Nanotube Raman Spectroscopy. Acc. Chem. Res. 35 (12): 1070-1078spa
dcterms.referencesElhissi A. M. A., Ahmed W., Hassan I. U., Dhanak V. R., and D’Emanuele A., 2012. Carbon Nanotubes in Cancer Therapy and Drug Delivery. J. of Drug Delivery Volume 2012, Article ID 837327, doi:10.1155/2012/837327spa
dcterms.referencesFisher J., Sarkar S., Buchanan C., 2010. Photothermal Response of Human and Murine Cancer Cells to Multiwalled Carbon Nanotubes after Laser Irradiation. Cancer Research, 70 (23): 9855-9864.spa
dcterms.referencesGalvis, M., Barbosa, O., Ruiz, M., Cruz, J., Ortiz, C., Torres R., 2012. Chemical amination of lipase B from Candida Antarctica is an efficient solution for the preparation of cross linked enzyme aggregates. Process Biochemestry 47 (12): 2373-2378.spa
dcterms.referencesGannon C. J., Cherukuri P., Yakobson B. I., Cognet L., Kanzius J. S., Kittrell C., Weisman R. B., Pasquali M., Schmidt H. K., Smalley R. E., Curley S. A., 2007. Carbon Nanotube-enhanced Thermal Destruction of Cancer Cells in a Noninvasive Radiofrequency Field. CANCER, Volume 110 (12): 2654-2665.spa
dcterms.referencesGraham E. G., MacNeill C. M., Levi-Polyachenko N. H., 2013. Quantifying folic acid-functionalized multi-walled carbon nanotubes bound to colorectal cancer cells for improved photothermal ablation. J. Nanopart. Res. 15: 1649-1662.spa
dcterms.referencesHashida Y., Tanaka H, Zhou S., Kawakami S. , Yamashita F., Murakami T., Umeyama T., Imahori H., Hashida M., 2014. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite. Journal of Controlled Release 173: 59-66.spa
dcterms.referencesHildebrandt B., Wust P, Ahlers O., Dieing A., Sreenivasa G, Kerner T,Felix R.,Riess H., 2002.The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology 43 (1): 33–56.spa
dcterms.referencesHuang X, El-Sayed IH, Qian W, El-Sayed M.A., 2006. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc. 128 (6): 2115–2120.spa
dcterms.referencesHussain S., Dosser L., Payne S., Stacy B., Schrandt A., 2011. Fundamental Examination of Nanoparticle Heating Kinetics Upon Near Infrared (NIR) Irradiation. ACS Appl. Mater. Interfaces 3: 3971–3980.spa
dcterms.referencesJinno M., Ando Y., Bandow S., Fan J., Yudasaka M., Ijima S., 2006. Raman scattering study for heat-treated carbon nanotubes: The origin of ≈1855 cm−1 Raman band. Chemical Physics Letters 418 (1-3): 109-114.spa
dcterms.referencesKang B, Yu D. C, Dai Y.D., Chang S.Q., Chen D., Ding Y.T., 2009. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as ‘‘Bomb’’ agents. Small 5 (11): 1292–301.spa
dcterms.referencesKim U., Furtado C., Liu X., Chen G., Eklund P. 2005. Raman and IR Spectroscopy of Chemically Processed Single-Walled Carbon Nanotubes. J. Am Chem Soc. 127 (44): 15437-15445.spa
dcterms.referencesKoh B., Park J. B., Hou X. M. and Cheng W., 2011. Comparative Dispersion Studies of Single-Walled Carbon Nanotubes in Aqueous Solution. J. Phys. Chem. B, 115 (11): 2627–2633.spa
dcterms.referencesKosuge H., Sherlock S. P., Kitagawa T., Dash R., Robinson J. T., Dai H.; McConnell M. V., 2012. Near Infrared Imaging and Photothermal Ablation of Vascular Inflammation Using Single-Walled Carbon Nanotubes. J. Am. Heart Assoc. 2012: doi: 10.1161/JAHA.112.002568spa
dcterms.referencesLevi-Polyachenko N., Merkel E., Jones B., Carroll D., Stewar J. H., 2009. Rapid Photothermal Intracellular Drug Delivery Using Multiwalled Carbon Nanotubes. Molecular. Pharmaceutics 6 (4): 1092-1099.spa
dcterms.referencesLiu Z., Davis C., Cai W., He L., Chen X., and Dai H., 2008. Circulation and long-term fate of functionalized, bio-compatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. PNAS 105 (5): 1410 –1415.spa
dcterms.referencesLoo C., Lowery A, Halas N, West J, Drezek R., 2005. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5 (4): 709 –711spa
dcterms.referencesMadani S., Tan A., Dwek M., Seifalian A., 2012. Functionalization of single-walled carbon nanotubes and their binding to cancer cells. Int J Nanomedicine 7: 905-914.spa
dcterms.referencesManthe R., Foy S., Krishnamurthy N., Sharma B., Labhasetwar V., 2010. Tumor Ablation and Nanotechnology. Molecular Pharmaceutics 7 (6): 1880-1898spa
dcterms.referencesMarega R, Aroulmoji V, Bergamin M, Feruglio L, Dinon F, Bianco A., 2010. Two-Dimensional Diffusion-Ordered NMR Spectroscopy as a Tool for Monitoring Functionalized Carbon Nanotube Purification and Composition. ACS Nano. 4 (4): 2051-8.spa
dcterms.referencesMarega R., Aroulmoji V., Dinon F., Vaccari L., Giordani S., Bianco A., Murano E. and Prato M., 2009. Diffusion-Ordered NMR Spectroscopy in the Structural Characterization of Functionalized Carbon Nanotubes. J. Am Chem Soc 131 (25): 9086–9093.spa
dcterms.referencesMoon H., Lee S., Choi H., 2009. In Vivo Near-Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes. ACS Nano 3 (11): 3707-3713.spa
dcterms.referencesNelson D. J. and Kumar R., 2013. Characterizing Covalently Sidewall-Functionalized Single-Walled Carbon Nanotubes by Using 1H NMR Spectroscopy. J. Phys. Chem. C 117: 14812−14823.spa
dcterms.referencesNikfarjam M, Muralidharan V, Christophi C., 2005. Mechanisms of focal heat destruction of liver tumors. J. Surg. Res. 127: 208–223.spa
dcterms.referencesNiu L., Meng L., Lu Q., 2013. Folate-Conjugated PEG on Single Walled Carbon Nanotubes for Targeting Delivery of Doxorubicin to Cancer Cells, Macromol Biosci 13 (6): 735–744.spa
dcterms.referencesNovoa, L. V., 2012. Actividad de nanotubos de carbono acoplados a ácido fólico contra Leishmania panamensis después de irradiación con luz infrarroja cercana, Trabajo de Maestría en Ciencias básicas de la Escuela de Medicina, dirigida por Patricia Escobar R. UIS.spa
dcterms.referencesPavitra Chakravarty, Radu Marches, Neil S. Zimmerman, Austin D.-E. Swafford, Pooja Bajaj, Inga H. Musselman, Paul Pantano, Rockford K. Draper, and Ellen S. Vitetta, 2008. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes, PNAS 105 (25): 8697– 8702.spa
dcterms.referencesRobinson J., Welsher K., Tabakman S., Sherlock S., Wang h., Luong R., Dai H. , 2010. High Performance In Vivo Near-IR (>1 μm) Imaging and Photothermal Cancer Therapy with Carbon Nanotubes. Nano Res. 3 (11): 779-793.spa
dcterms.referencesTong R., Chiang H. H., and Kohane D. S., 2013. Photoswitchable nanoparticles for in vivo cancer chemotherapy. PNAS 110 (47): 19048–19053.spa
dcterms.referencesVardharajula S., Ali SZ, Tiwari PM, Eroğlu E, Vig K, Dennis V.A, Singh S.R., 2012. Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine (7): 5361-74.spa
dcterms.referencesWANG H., ZHAO Y-L., and NIE G-J., 2013. Multifunctional nanoparticle systems for combined chemo-and photothermal cancer therapy. Front. Mater. Sci. 7 (2): 118–128.spa
dcterms.referencesZhang Y L. X, Tang HM. D, Xie Q. T. L, Yao S, 2013. Biocompatible multi-walled carbon nanotube-chitosan-folic acid nanoparticle hybrids as GFP gene delivery materials. Colloids Surf B Biointerfaces 111C: 224-231.spa
dcterms.referencesWadzanai, C., y Tebello, N., 2010. Characterization of amine-functionalized single-walled carbon nanotube-low symmetry phthalocyanine conjugates. Carbon 48 (10): 2831-2838.spa
dcterms.referencesZhao D., Alizadeh D., Zhang L., W. Liu, Farrukh O., Manuel E., Diamond D. J. and Badie B., 2011. Carbon Nanotubes Enhance CpG Uptake and Potentiate Antiglioma Immunity. Clin Cancer Res 17 (4): 771-782.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.161-
dc.subject.proposalNanotubos de carbónspa
dc.subject.proposalCarbon nanotubeseng
dc.subject.proposalÁcido fólicospa
dc.subject.proposalFolic acideng
dc.subject.proposalFoto-activaciónspa
dc.subject.proposalPhoto-activationeng
dc.subject.proposalCalentamiento térmicospa
dc.subject.proposalThermal heatingeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume38spa
dc.relation.citationstartpage152spa
dc.relation.citationendpage166spa
dc.publisher.placeBogotá, Colombiaspa
dc.relation.citationissueSuplementospa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
12. Calentamiento por Fotoactivación de NanoTubos de Carbono.pdfCiencias Químicas3.06 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons