Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/836 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTorres Sáez, Rodrigo G.-
dc.date.accessioned2021-10-15T17:13:46Z-
dc.date.available2021-10-15T17:13:46Z-
dc.date.issued2014-11-28-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/836-
dc.description.abstractEn este trabajo, se llevó a cabo modificaciones químicas de preparaciones de lipasa B de Candida antarctica (CALB) inmovilizadas en soportes de octil-agarosa, agarosa-Bromuro Cianógeno-(BrCN) y Eupergit C usando diferentes compuestos químicos, por ej. Etilendiamina (EDA), anhídrido succínico (SA) y ácido 2,4,6-trinitrobenceno-sulfónico (TNBS). Estas modificaciones de la superficie de la enzima causó cambios en las propiedades tales como carga neta (punto isoeléctrico o balance de grupos catiónicos/aniónicos) o hidrofobicidad (solubilidad), y demostraron ser métodos prácticos para mejorar el funcionamiento del biocatalizador (estabilidad, actividad y enantioselectividad). Estas alteraciones en las propiedades de la enzima por modificación química podría ser debida a cambios en la estructura de la forma activa de CALB. De esta manera, la modificación química en fase sólida de lipasas inmovilizadas podría convertirse en una herramienta poderosa en el diseño de librerías de lipasas con propiedades muy diferentes.spa
dc.description.abstractIn this work, it was carried out chemical modifications of Candida antarctica lipase B (CALB) preparations immobilized on octyl-agarose, BrCN-agarose and Eupergit-C supports using different chemical compounds, e.g. ethylenediamine (EDA), succinic anhydride (SA) and 2,4,6-trinitrobenzensulfonic acid (TNBS). These modifications of the enzyme surface caused changes in physical properties such as net charge (isoelectric point or balance of cationic/anionic groups) or hydrophobicity (solubility), and proved to be practical methods to enhance the biocatalyst performance (stability, activity and enantio-selectivity). These alterations in enzyme properties by chemical modification should be due to changes in the structure of the active form of CALB. Therefore, solid phase chemical modification of immobilized lipases may become a powerful tool in the design of lipase libraries with very different properties.eng
dc.format.extent24 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleVol. 38 Suplemento Modificación Química en Fase Sólida de Lipasa B de Candida antarctica para mejorar sus propiedades de actividad, estabilidad y enantioselectividadspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesAdlercreutz, P. 2013. Immobilisation and application of lipases in organic media. Chem Soc Rev. 42: 6406-6436.spa
dcterms.referencesAhmed, M.; Kelly, T. & Ghanem, A. 2012. Applications of enzymatic and non-enzymatic methods to access enantiomerically pure compounds using kinetic resolution and racemization. Tetrahedron. 68 (34): 6781-6802.spa
dcterms.referencesAnderson, E.; Larsson, K. & Kirk, O. 1998. One Biocatalyst–Many Applications: The Use of Candida antarctica B-Lipase in Organic Synthesis. Biocat Biotrans. 16 (3): 181-204.spa
dcterms.referencesAravindan, R.; Anbumathi, P. & Viruthagiri, T. 2007. Lipase applications in food industry. Indian J Biotechnol. 6: 141-158.spa
dcterms.referencesBarbosa, O.; Ariza, C.; Ortiz, C. & Torres, R. 2010. Kinetic resolution of (R/S)-propranolol (1-isopropylamino-3-(1-naphtoxy)-2-propanolol) catalyzed by immobilized preparations of Candida antarctica lipase B (CAL-B)”. New Biotechnol. 27 (6): 844-850.spa
dcterms.referencesBarbosa, O.; Ortiz, C.; Torres, R. & Fernández-Lafuente, R. 2011. Effect of the immobilization protocol on the properties of lipase B from Candida antarctica in organic media: Enantiospecific production of atenolol acetate. J Mol Catal B: Enzym. 71: 124-132.spa
dcterms.referencesBarbosa, O.; Ruiz, M.; Ortiz, C.; Fernández, M.; Torres, R.; Fernandez-Lafuente, R. 2012. Modulation of the properties of immobilized CALB by chemical modification with 2,3,4- trinitrobenzenesulfonate or ethylendiamine. Advantages of using adsorbed lipases on hydrophobic supports. Process Biochem. 47: 867-876.spa
dcterms.referencesBarros M, Fleuri L, Macedo G. 2010. Seed lipases: sources, applications and properties: a review”. Brazil J Chem Eng. 27 (1): 15-29.spa
dcterms.referencesBaslé, E.; Joubert, N. & Pucheault, M. 2010. Protein chemical modification on endogenous amino acids. Chem Biol. 17: 213-227.spa
dcterms.referencesBastida, A.; Sabuquillo, P.; Armisén, P.; Fernández-Lafuente, R.; Huguet, J. & Guisan, J.M. 1998. A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng. 58: 486-493.spa
dcterms.referencesBerglund, P. 2001. Controlling lipase enantioselectivity for organic synthesis. Biomol Eng. 18: 13-22.spa
dcterms.referencesBetancor, L.; López-Gallego, F.; Hidalgo, A.; Alonso-Morales, N.; Mateo, C.; Dellamora-Ortiz, G.; et al. 2006. Different mechanisms of protein immobilization on glutaraldehyde activated supports: effect of support activation and immobi- lization conditions. Enzyme Microb Technol. 39: 877-382.spa
dcterms.referencesBradford, M.M. 1976. Rapid and sensitive method for the quan-titation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.spa
dcterms.referencesBrady, L.; Brzozowski, A.; Derewenda, Z.; Dodson, E. & Dodson, G. 1990. A serine protease triad forms the catalytic center of a triacylglycerol lipase”. Nature. 343: 767-770.spa
dcterms.referencesBrzozowski, A.; Derewenda, Z.; Derewenda, U.; Dodson, G. & Lawson, D.M. 1991. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature. 351: 491-494.spa
dcterms.referencesCabrera, Z.; Fernandez-Lorente, G.; Fernandez-Lafuente, R.; Palomo, J.M. & Guisan, J.M. 2009. Enhancement of Novozym-435 catalytic properties by physical or chemical modification. Process Biochem. 44: 226-231.spa
dcterms.referencesCantone, S.; Hanefeld, U. & Basso, A. 2007. Biocatalysis in non-conventional media-ionic liquids, supercritical fluids and the gas phase. Green Chem. 9: 954-971.spa
dcterms.referencesCarraway, K.L. & Koshland Jr, D.E. 1968. Reaction of tyrosine residues in proteins with carbodiimide reagents. Biochem Biophys Acta 160: 272–4.spa
dcterms.referencesCarraway, K.L. & Koshland Jr DE. 1972. Carbodiimide modification of proteins. Methods Enzymol. 25:616–23.spa
dcterms.referencesCarraway, K.L.; Spoerl, P. & Koshland Jr, D.E. 1969. Carboxyl group modification in chymotrypsin and chymotrypsinogen. J Mol Biol. 42: 133-137.spa
dcterms.referencesCasas-Godoy, L.; Duquesne, S.; Bordes, F.; Sandoval, G. & Marty, A. 2012. Lipases: An overview. Methods Mol Biol. 861: 3-30.spa
dcterms.referencesChalker, J.M.; Bernardes, G.J.L.; Lin, Y.A. & Davis, B.G. 2009. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem Asian J. 4: 630-640.spa
dcterms.referencesChen, C.; Fujimoto, Y.; Girdaukas, G. & Sih, C. 1982. General Aspects and Optimization of Enantioselective Biocatalysis. In: Organic Solvents: The Use of Lipases. J Am Chem Soc. 104: 7294-7299.spa
dcterms.referencesChiang, C-J; Chern, J-T; Wang, J-Y& Chao, Y-P. 2008. Facile immobilization of evolved Agrobacterium radiobacter carbamoylase with high thermal and oxidative stability. J Agric Food Chem. 56: 6348-6354.spa
dcterms.referencesDash, C.; Phadtare, S.; Deshpande, V. & Rao, M. 2001. Structural and mechanistic insight into the inhibition of aspartic proteases by a slow-tight binding inhibitor from an extremophilic Bacillus sp.: correlation of the kinetic parameters with the inhibitor induced conformational changes. Biochemistry. 40: 11525–32.spa
dcterms.referencesDavis, B.G.; Shang, X.; DeSantis, G.; Bott, R.R. & Jones, J.B. 1999. The controlled introduction of multiple negative charge at single amino acid sites in subtilisin Bacillus lentus. Bioorg Med Chem. 7: 2293-2301.spa
dcterms.referencesDavis, B.G. 2003. Chemical modification of biocatalysts. Curr Opin Biotechnol.14: 379-386.spa
dcterms.referencesDe Santis, G. & Jones, J. 1999. Chemical modification of enzymes for enhanced functionality. Curr Opin Biotechnol. 10: 324-330.spa
dcterms.referencesDesnuelle P. 1972. The Enzymes. 3rd Editorial Boyer, Academic Press, NY, 575.spa
dcterms.referencesDerewenda, U.; Brzozowski, A.; Lawson, D. & Derewenda, Z.S. 1992. Catalysis at the interface: the anatomy of conformational change in a triglyceride lipase. Biochemistry. 31: 1532-1541.spa
dcterms.referencesDíaz-Rodríguez, A. & Davis, B.G. 2011. Chemical modification in the creation of novel biocatalysts. Curr Opin Chem Biol. 15 (2): 211-219.spa
dcterms.referencesDurand, J.; Teuma, E. & Gómez, M. 2007. Ionic liquids as a medium for enantioselective catalysis. C R Chim. 10: 152-177.spa
dcterms.referencesEricsson, J.; Kasrayan, A.; Johansson, P.; Bergfors, T. & Mowbray, L. 2008. X-ray Structure of Candida antarctica Lipase A Shows a Novel Lid Structure and a Likely Mode of Interfacial Activation. J Mol Biol. 376: 109-119.spa
dcterms.referencesFernandez-Lafuente, R.; Rosell, C.M.; Alvaro, G. & Guisan, J.M. 1992. Additional stabilization of penicillin G acylase-agarose derivatives by controlled chemical modification with formaldehyde. Enzyme Microb Technol. 14: 489-495.spa
dcterms.referencesFernandez-Lafuente, R.; Rosell, C.M.; Rodriguez, V. & Guisan, J.M. 1995. Strategies for enzyme stabilization by intramolecular crosslinking with bifunctional reagents. Enzyme Microb Technol. 17: 517–23.spa
dcterms.referencesFernandez-Lafuente, R. 2009. Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme Microb Technol. 45: 405-418.spa
dcterms.referencesFernández-Lorente, G.; Palomo, J.M.; Cabrera, Z.; Guisán,J.M. &Fernández-Lafuente, R. 2007. Specificity enhancement towards hydrophobic substrates by immobilization of lipases by interfacial activation on hydrophobic supports. Enzyme Microb Technol 41: 565-569.spa
dcterms.referencesFernandez-Lorente, G.; Godoy, C.A.; Mendes, A.A.; Lopez-Gallego, F.; Grazu, V.; de las Rivas, B., et al. 2008. Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose. Bio-macromolecules. 9: 2553-2561.spa
dcterms.referencesFernandez-Lorente, G.; Godoy, C.A.; Mendes, A.A.; Lopez-Gallego, F.; Grazu, V.; de las Rivas, B., et al. 2008. Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose. Bio-macromolecules. 9: 2553-2561.spa
dcterms.referencesFerrer, M.; Golyshina, O.; Beloqui, A. & Golyshin, P.N. 2007. Mining enzymes from extremes environments. 10 (3): 207-214.spa
dcterms.referencesFjerbaek, L.; Christensen, K.V. & Norddahl, B. 2009. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng. 102: 1298-1315.spa
dcterms.referencesForde, J.; Vakurov, A.; Gibson, T.D.; Millner, P.; Whelehan, M.; Marison, I.W.; et al. 2010a. Chemical modification and immobilisation of lipase B from Candida antarctica onto mesoporous silicates. J Mol Catal B: Enzym. 66: 203-209.spa
dcterms.referencesForde, J.; Tully, E.; Vakurov, A.; Gibson, T.D.; Millner, P. & Ó’Fágáin, C. 2010b. Chemical modification and immobilisation of laccase from Trametes hirsuta and from Myceliophthora thermophila. Enzyme Microb Technol. 46: 430-437.spa
dcterms.referencesGalvis, M.; Barbosa, O.; Ruiz, M.; Cruz, J.; Torres, R.; Ortiz, C. & Fernandez-Lafuente, R. 2012. Chemical amination of lipase B from Candida antarctica is an efficient solution for the preparation of crosslinked enzyme aggregates. Proc Biochem. 47: 2373–2378.spa
dcterms.referencesGandhi, N.N. 1997. Applications of lipase. J Am Oil Chem Soc. 74: 621-634.spa
dcterms.referencesGotor-Fernández, V.; Brieva, R. & Gotor, V. 2006a. Lipases: Useful biocatalysts for the preparation of pharmaceuticals. J Mol Catal B: Enz. 40: 111-120.spa
dcterms.referencesGotor-Fernández, V.; Busto, E. & Gotor, V. 2006b. Candida antarctica lipase B: an ideal bio- catalyst for the preparation of nitrogenated organic compounds. Adv Synth Catal 348: 797–812.spa
dcterms.referencesGrochulski, P.; Li, Y.; Schragm, J.; Boutthilier, F.; Smith, P.; Harrinson, D.; Rubin, B. & Cyler, M. 1993. Insights into interfacial activation from an open structure of Candida rugosa lipase”. J Biol Chem. 268: 12843–12847.spa
dcterms.referencesGron, H.; Bech, L.M.; Branner, S. & Breddam, K. 1990. A highly active and oxidation- resistant subtilisin-like enzyme produced by a combination of site-directed mutagenesis and chemical modification. Eur J Biochem. 194: 897-901.spa
dcterms.referencesGupta, M.N. & Roy, I. 2004. Enzymes in organic media: forms, functions and applications. Eur J Biochem. 271: 2575-2583.spa
dcterms.referencesHacking, M.; Van Rantwijk, F. & Sheldon, R. 2000. Lipase catalysed synthesis of diacyl hydrazines: An indirect method for kinetic resolution of chiral acids. J Mol Catal B: Enz. 9 (4-6): 183-191.spa
dcterms.referencesHernandez, K. & Fernández-Lafuente, R. 2011. Control of protein immobilization. Coupling immobilization and site directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb Technol. 48: 107-122.spa
dcterms.referencesHernandez, K.; Garcia-Verdugo, E.; Porcar, R. & Fernandez-Lafuente, R. 2011. Hydrolysis of triacetin catalyzed by immobilized lipases: Effect of the immobilization protocol and experimental conditions on diacetin yield”. Enz Microb Technol. 48 (6-7): 510-517.spa
dcterms.referencesHusain, S.; Jafri, F. & Saleemuddin, M. 1996. Effects of chemical modification on the stability of invertase before and after immobilization. Enzyme Microb Technol. 18: 275–80.spa
dcterms.referencesItoh, T. 2009. Recent development of enzymatic reaction systems using ionic liquids. J Synth Org Chem. 67: 143-155.spa
dcterms.referencesIwasaki, Y. & Yamane, T. 2000. Enzymatic synthesis of structured lipids. J Mol Catal B: Enzyme. 10: 129-140.spa
dcterms.referencesJä ckel, C.; Kast, P. & Hilvert, D. 2008. Protein design by directed evolution. Ann Rev Biophys. 37: 153-173.spa
dcterms.referencesJaeger, K.E. & Reetz, M.T. 1998. Microbial lipases from versatile tools for biotechnology. Trends Biotechnol. 16: 396-403.spa
dcterms.referencesJagtap, S. & Rao, M. 2006. Conformation and microenvironment of the active site of a low molecular weight 1,4-beta-D-glucan glucanohydrolase from an alkalothermophilic Thermomonospora sp.: involvement of lysine and cysteine residues. Biochem Biophys Res Commun. 347: 428–32.spa
dcterms.referencesJuhl, P.; Doderer, K.; Hollmann, F.; Thum, O. & Pleiss, J. 2010. Engineering of Candida antarctica lipase B for hydrolysis of bulky carboxylic acid esters. J Biotechnol. 150 (4): 474-480.spa
dcterms.referencesKhajeh, K.; Naderi-Manesh, H.; Ranjbar, B.; Moosavi-Movahedi, A.A. & Nemat- Gorgani, M. 2001. Chemical modification of lysine residues in Bacillus alpha-amylases: effect on activity and stability. Enzyme Microb Technol. 28: 543-549.spa
dcterms.referencesKirk, O. & Christensen, M. 2002. Lipases from Candida antarctica: Unique Biocatalysts from a Unique Origin”. Organic Process Research and Development. 6: 446-451.spa
dcterms.referencesKohn, J. & Wilchek, M. 1982. A new approach (cyano-transfer) for cyanogen bro- mide activation of sepharose at neutral pH, which yields activated resins, free of interfering nitrogen derivatives. Biochem Biophys Res Commun. 107: 878-884.spa
dcterms.referencesKolodziejska, R.; Karczmarska-Wódzka, A.; Wolan, A. & Dramiński, M. 2012. Candida antarctica lipase B catalyzed enantioselective acylation of pyrimidine acyclonucleoside”. Biocat Biotrans. 30 (4): 426-430.spa
dcterms.referencesKotormán, M.; Cseri, A.; Laczkó, I. & Simon, LM. 2009. Stabilization of α-chymotrypsin in aqueous organic solvents by chemical modification with organic acid anhydrides. J Mol Catal B: Enzym. 59 (1–3): 153-157.spa
dcterms.referencesKurtovic, S. & Mannervik, B. 2009. Identification of emerging quasi-species in directed enzyme evolution. Biochemistry. 48: 9330-9339.spa
dcterms.referencesLaemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685.spa
dcterms.referencesMansfeld, J.; Vriend, G.; Van Den Burg, B.; Eijsink, V.G.H. & Ulbrich-Hofmann, R. 1999. Probing the unfolding region in a thermolysin-like protease by site-specific immobilization. Biochemistry. 38: 8240-8245.spa
dcterms.referencesMarch, S.C.; Parikh, I. & Cuatrecasas, P. 1974. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal Biochem. 60: 149-152.spa
dcterms.referencesMarciello, M.; Filice, M. & Palomo, J.M. 2012. Different strategies to enhance the activity of lipase catalysts. Cat Sci Technol. 2: 1531-1543spa
dcterms.referencesMartinelle, M.; Holmquist, M. & Hult, K. 1995. On the interfacial activation of Candida Antarctica lipase A and B as compared with Humicola lanuginose lipase. Biochim Biophys Acta. 1258: 272-276.spa
dcterms.referencesMateo, C.; Fernández-Lorente, G.; Abian, O.; Fernández-Lafuente, R. & Guisán, J.M. 2000. Multifunctional epoxy supports: A new tool to improve the covalent immobilization of proteins. The promotion of physical adsorptions of proteins on the supports before their covalent linkage. Biomacromolecules. 1: 739-745.spa
dcterms.referencesMateo, C.; Abian, O.; Bernedo, M.; Cuenca, E.; Fuentes, M.; Fernandez-Lorente, G.; et al. 2005. Some special features of glyoxyl supports to immobilize proteins. Enzyme Microb Technol. 37: 456-462.spa
dcterms.referencesMateo, C.; Palomo, J.M.; Fernández-Lorente, G.; Guisan, J.M. & Fernandez-Lafuente, R. 2007a. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol. 40: 1451-1463.spa
dcterms.referencesMateo, C.; Grazú, V.; Pessela, B.; Montes, T.; Palomo, J.M.; Torres, R.; López-Gallego, F.; Fernández-Lafuente, R. & Guisán, J.M. 2007b. Advances in the design of new epoxy supports for enzyme immobilization-stabilization. Biochem Soc Trans. 35: 1593-1601.spa
dcterms.referencesMatsumoto, K.; Davis, B.G. & Jones, J.B. 2002. Chemically modified “polar patch” mutants of subtilisin in peptide synthesis with remarkably broad substrate acceptance: designing combinatorial biocatalysts. Chem Eur J. 8: 4129-4137.spa
dcterms.referencesMendes, A.A.; De Castro, H.F.; De, S.; Rodrigues, D.; Adriano, W.S.; Tardioli, P.W., et al. 2011. Multipoint covalent immobilization of lipase on chitosan hybrid hydrogels: influence of the polyelectrolyte complex type and chemical modification on the catalytic properties of the biocatalysts. J Ind Microbiol Biotechnol. 38: 1055-1066.spa
dcterms.referencesMeyer, H-P. 2006. Chemocatalysis biocatalysis (biotransformation): some thoughts of a chemist and of a biotechnologist. Org Process Res Dev. 10: 572-580.spa
dcterms.referencesMontes, T.; Grazú, V.; Lopez-Gallego, F.; Hermoso, J.; Guisán, J.M. & Fernandez-Lafuente R. 2006. Chemical modifica-tion of protein surfaces to improve their reversible enzyme immobilization on ionic exchangers”. Biomacromolecules. 11: 3052–3058.spa
dcterms.referencesNobel, M.; Cleasby, A.; Johnson, L.; Egmond, M. & Frenken, G. 1993. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett. 331: 1265–1269.spa
dcterms.referencesO`Fágáin, C. 2003. Enzyme stabilization- recent experimental progress. Enzyme Microb Technol. 33: 137-149.spa
dcterms.referencesOrtega, S.; Máximo, M.; Montiel, M.; Murcia, M. & Bastida, J. 2012. Esterification of polyglycerol with polycondensed ricinoleic acid catalysed by immobilised Rhizopus oryzae lipase. Bioprocess Biosyst Eng. 36: 1291-1302.spa
dcterms.referencesOrtiz-Soto, M.E.; Rudiño-Piñera, E.; Rodriguez-Alegria, M.E. & Munguia, A.L. 2009. Evaluation of cross-linked aggregates from purified Bacillus subtilis levansucrase mutants for transfructosylation reactions. BMC Biotechnol. 9: 68.spa
dcterms.referencesOverbeeke, P.; Govardhan, C.; Khalaf, N.; Jongejan, J. & Heijnen, J. 2000. Influence of lid conformation on lipase enantioselectivity. J Mol Catal B: Enzym. 10 (4): 385-393.spa
dcterms.referencesPalomo, J.M.; Fernández-Lorente, G.; Guisán, J.M. & Fernández-Lafuente, R. 2007. Modulation of immobilized lipase enantioselectivity via chemical amination. Adv Synth Catal. 349: 1119–27.spa
dcterms.referencesPalomo, J.M. 2010. Diels-Alder cycloaddition in protein chemistry. Eur J Org Chem. 33: 6303-6314.spa
dcterms.referencesPalomo, J.M. & Guisan, J.M. 2012. Differnt strategies for hyperactivation of lipase biocastalysts. Methods Mol Biol. 861: 329-341.spa
dcterms.referencesPandey, A.; Benjamin, S.; Soccol, C.R.; Nigam, P.; Krieger, N. & Soccol, V.T. 1999. The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem. 29: 119-131.spa
dcterms.referencesPedroche, J.; del Mar Yust, M.; Mateo, C.; Fernández-Lafuente, R.; Girón-Calle, J.; Alaiz, M.; et al. 2007. Effect of the support and experimental conditions in the intensity of the multipoint covalent attachment of proteins on glyoxyl-agarose supports: correlation between enzyme–support link-ages and thermal stability. Enzyme Microb Technol. 40: 1160-1166.spa
dcterms.referencesPeterson, A.E.; Adlercrutz, P. & Mattiason, B. 2007. A water activity control system for enzymatic reactions in organic media. Biotechnol Bioeng. 97: 235-241.spa
dcterms.referencesPolizzi, K.M.; Bommarius, A.S.; Broering, J.M. & Chaparro-Riggers, J.F. 2007. Stability of bio-catalysts. Curr Opin Chem Biol. 11: 220-5.spa
dcterms.referencesPollard, D.J. & Woodley, J.M. 2007. Biocatalysis for pharma-ceutical intermediates: the future is now. Trends Biotechnol. 25: 66-73.spa
dcterms.referencesPrechter, A.; Gröger, H. & Heinrich, M. 2012. Synthesis of (S)-(+)-cericlamine through lipase-catalyzed aminolysis of azo acetates. Org Biomol Chem. 17 (10): 3384-3387.spa
dcterms.referencesQuinn, D.M.; Shirai, K.; Jackson, R.L. & Harmony, J.A. 1982. Lipoprotein lipase catalyzed hydrolysis of water-soluble p-nitrophenyl esters. Inhibition by apoliporotein C-II. Bio-chemistry. 21 (26): 6872-6879.spa
dcterms.referencesRao, M.N.; Kembhavi, A.A. & Pant, A. 1996. Role of lysine, tryptophan and calcium in the beta-elimination activity of a low-molecular-mass pectate lyase from Fusarium moniliformae. Biochem J. 319: 159-164.spa
dcterms.referencesRay, J.; Nagy, Z.; Smith K.; Bhaggan, K. & Stapley, A. 2013. Kinetic study of the acidolysis of high oleic sunflower oil with stearic–palmitic acid mixtures catalysed by immo-bilised Rhizopus oryzae lipase. Biochem Eng J. 73: 17-28.spa
dcterms.referencesReetz, M.T. 2002. Lipases as practical biocatalysts. Curr Opin Chem Biol 6: 145-150.spa
dcterms.referencesReetz, M.T. 2007. Controlling the selectivity and stability of proteins by new strategies in directed evolution: the case of organocatalytic enzymes. Ernst Schering Found Symp Proc 2007: 321-340.spa
dcterms.referencesRehm, S.; Trodler, P. & Pleiss, J. 2011. Solvent-induced lid opening in lipases: A molecular dynamics study. Protein Science. 19 (11): 2122-2130.spa
dcterms.referencesReis, P.; Miller, P.; Kragel, K. & Leser, M, et al. 2008. Lipases at Interfaces: Unique Interfacial Properties as Globular Proteins. Langmuir. 24: 6812-6819.spa
dcterms.referencesReis, P.; Holmberg, K.; Watzke, H.; Leser, M. & Miller, R. 2009. Lipases at interfaces: A review. Adv Colloid Interface Sci. 147-148 (C): 237-250.spa
dcterms.referencesRodrigues, R.C:; Ortiz, C., Berenguer-Murcia, A.; Torres, R. & Fernández-Lafuente, R. 2013. Modifying enzyme activity and selectivity by immobilization. RSC. 42, 6290-6307.spa
dcterms.referencesRodrigues, R.C.; Berenguer-Murcia, A. & Fernandez-Lafuente, R. 2011. Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Adv Synth Catal. 353: 2216-2238.spa
dcterms.referencesRodrigues, R.C.; Godoy, C.A.; Volpato, G.; Ayub, M.A.Z.; Fernandez-Lafuente, R. & Guisan, J.M. 2009. Immobilization-stabilization of the lipase from Thermomyces lanuginosus: critical role of chemical amination. Process Biochem. 44: 963-968.spa
dcterms.referencesSamuelson, J.C. 2011. Recent developments in difficult protein expression: a guide to E. coli strains, promoters, and relevant host mutations. Methods Mol Biol. 705: 195-209.spa
dcterms.referencesSantaniello, E.; Casati, S. & Ciuffreda, P. 2006. Lipase-Catalyzed Deacylation by Alcoholysis: A Selective, Useful transesterification reaction. Curr Org Chem. 10 (10): 1095-1123.spa
dcterms.referencesSarda, L. & Desnuelle, P. 1958. Actions of pancreatic lipase on esters in emulsions. Biochim Biophys Acta. 30 (3): 513-521.spa
dcterms.referencesSecundo, F.; Carrea, G.; Tarabiono, C.; Gatti-Lafranconi, P.; Brocca, S.; Lotti, M.; Jaeger, K.; Puls, M. & Eggert, T. 2006. The lid is a structural and functional determinant of lipase activity and selectivity”. Journal of Molecular Catalysis B: Enzymatic. 39: 166-170.spa
dcterms.referencesSchmid, A.; Dordick, J.S.; Hauer, B.; Kiener, A.; Wubbolts, M. & Witholt, B. 2001. Industrial biocatalysis today and tomorrow. Nature. 409: 258-268.spa
dcterms.referencesSchmidt, M.; Bö ttcher, D. & Bornscheuer, U.T. 2009. Protein engineering of carboxyl esterases by rational design and directed evolution. Protein Pept Lett. 16: 1162-1171.spa
dcterms.referencesSchoemaker, H.E.; Mink, D. & Wubbolts, M.G. 2003. Dispelling the myths - biocatalysis in industrial synthesis. Science. 99: 1694-1697.spa
dcterms.referencesSharma, D.; Sharma, B. & Shukla, A.K. 2011. Biotechnological approach of microbial lipase: A review. Biotechnology. 10: 23-40.spa
dcterms.referencesSheldon, R.A. 2005. Green solvents for sustainable organic synthesis: state of the art. Green Chem. 7: 267-278.spa
dcterms.referencesSmith, D.W. 1996. Problems of translating heterologous genes in expression systems: the role of tRNA. Biotechnol Prog. 12: 417-422.spa
dcterms.referencesSnyder, S.L. & Sobocinski, P.Z. 1975. An improved 2,4,6 trinitrobenzenesulfonic acid method for the determination of amines. Anal Biochem. 64: 284-288.spa
dcterms.referencesStonkus, V.; Leite, L.; Lebedev, A.; Lukevics, E.; Ruplis, A.; Stoch, J., et al. 2001. Lipases in racemic resolutions. J Chem Technol Biotechnol. 76: 3-8.spa
dcterms.referencesStraathof, A.J.J.; Panke, S. & Schmid, A. 2002. The production of fine chemicals by bio-transformations. Curr Opin Biotechnol. 13: 548–56.spa
dcterms.referencesSvendsen, A. 2000. Lipase protein engineering. Biochim Biophys Acta. 2: 223-238.spa
dcterms.referencesTorchilin, V.P.; Maksimenko, A.V.; Smirnov, V.N.; Berezin, I.V.; Klibanov, A.M. & Martinek, K. 1979 The principles of enzyme stabilization IV. Modification of ‘key’ functional groups in the tertiary structure of proteins. Biochem Biophys Acta. 567: 1-11.spa
dcterms.referencesTyagi, R. & Gupta, M.N. 1998. Chemical modification and chemical cross-linking for protein/enzyme stabilization. Biochemistry (Moscow). 63: 334-344.spa
dcterms.referencesUeji, S.; Ueda, A.; Tanaka, H.; Watanabe, K.; Okamoto, T. & Ebara, Y. 2003. Chemical modification of lipases with various hydrophobic groups improves their enantio-selectivity in hydrolytic reactions. Biotechnol Lett. 25: 83-87.spa
dcterms.referencesUlbrich-Hofmann, R.; Arnold, U. & Mansfeld, J. 1997. The concept of the unfolding region for approaching the mechanisms of enzyme stabilization. J Mol Catal B: Enzym. 7: 125-131.spa
dcterms.referencesUppenberg, J.; Hansen, M.; Patkar, S. & Jones A. 1994. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure. 2: 34-40.spa
dcterms.referencesVallin, M.; Syrén, P-O. & Hult, K. 2010. Mutant lipase-catalyzed kinetic resolution of bulky phenyl alkyl sec-alcohols: a thermodynamic analysis of enantioselectivity. Chembiochem. 11: 411-416.spa
dcterms.referencesVan Loo, B.; Kingma, J.; Heyman, G.; Wittenaar, A.; Lutje Spelberg, J.H.; Sonke, T.; et al. 2009. Improved enantio-selective conversion of styrene epoxides and meso-epoxides through epoxide hydrolases with a mutated nucleophile-flanking residue. Enzyme Microb Technol. 44: 145-153.spa
dcterms.referencesVan Rantwijk, F.; Lau, R.M. & Sheldon, R.A. 2003. Biocatalytic transformations in ionic liquids. Trends Biotechnol. 21: 131-138.spa
dcterms.referencesVerger, R. 1997. Interfacial activation of lipases: facts and artifacts”. Trends Biotechnol. 15 (1): 32-38.spa
dcterms.referencesWang, J.; Do, D.; Chuah, G. & Jaenicke, S. 2013. Core-Shell Composite as the Racemization Catalyst in the Dynamic Kinetic Resolution of Secondary Alcohols. Chem Cat Chem. 5 (1): 247-254.spa
dcterms.referencesWong, S.S. & Wong, L-JC. 1992. Chemical crosslinking and the stabilization of proteins and enzymes. Enzyme Microb Technol. 14: 866-874.spa
dcterms.referencesWoodley, J.M. 2008. New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol. 26: 321-327spa
dcterms.referencesWynn, R. & Richards, F.M. 1993. Unnatural amino acid packing mutants of Escherichia coli thioredoxin produced by combined mutagenesis/chemical modification techniques. Protein Sci. 2: 395-403.spa
dcterms.referencesXiong, J.; Huang, Y. & Zhang, H. 2012. Lipase-catalyzed transesterification synthesis of citronellyl acetate in a solvent-free system and its reaction kinetics. Eur Food Res Technol. 235 (5): 907-914.spa
dcterms.referencesYamashita, H.; Nakatani, H. & Tonomura, B. 1993. Change of substrate specificity by chemical modification of lysine residues of porcine pancreatic alpha-amylase. Biochim Biophys Acta. 1202: 129-134.spa
dcterms.referencesYu, X-W.; Tang, N-J; Xiao, R. & Xu, Y. 2012. Engineering a Disulfide Bond in the Lid Hinge Region of Rhizopus chinensis Lipase: Increased Thermostability and Altered Acyl Chain Length Specificity. Plos One, 7 (10): e46388.spa
dcterms.referencesZhang, K.; Diehl, M.R. & Tirrell, D.A. 2005. Artificial polypeptide scaffold for protein immobilization. J Am Chem Soc. 127: 10136-10137.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.163-
dc.subject.proposalLIpasaspa
dc.subject.proposalLipaseeng
dc.subject.proposalCandida antarctica Bspa
dc.subject.proposalCandida antarctica Beng
dc.subject.proposalEnzimasspa
dc.subject.proposalEnzymeseng
dc.subject.proposalModificación químicaspa
dc.subject.proposalChemical modificationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume38spa
dc.relation.citationstartpage181spa
dc.relation.citationendpage204spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameUniversidad Industrial de Santander, Bucaramanga, Santander, Colombiaspa
dc.relation.citationissueSuplementospa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
14. Modificación Química en Fase Sólida de Lipasa B.pdfCiencias químicas3.19 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons