Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/858 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRestrepo A., Juan D.-
dc.date.accessioned2021-10-15T19:37:40Z-
dc.date.available2021-10-15T19:37:40Z-
dc.date.issued2015-06-24-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/858-
dc.description.abstractEn la última década, la cuenca del río Magdalena ha experimentado un incremento en las tasas de erosión del orden del 34 %, pasando de 550 t km-2 a-1antes del año 2000 a 710 t km-2 a-1 en el periodo 2000-2010, con un aumento en el transporte total de sedimentos de 44 Mt a-1. El análisis de la variabilidad espacial de la producción de sedimentos indica que el 78 % de la cuenca se encuentra en estado crítico de erosión dada la pérdida de bosques primarios de más del 60 % en el periodo entre 1980 y 2010. Mediante la calibración del modelo BQART para el periodo de 1980 a 2010, que combina variables climáticas, hidrológicas, litológicas, morfométricas y del impacto humano por deforestación, se explicó el 86 % de la variabilidad del transporte de sedimentos en la cuenca. El 9 % del transporte de sedimentos acumulado de las tres últimas décadas se debió a la deforestación; cerca de 160 Mt de sedimentos se han generados por la deforestación entre el 2000 y el 2010. Los indicadores económicos del Magdalena en las seis últimas décadas señalan que las actividades agrícolas fueron la principal causa del cambio en el uso de los suelos y de la pérdida forestal. El deterioro de los suelos de la cuenca requiere de medidas a escala regional, y no solamente de planes de mitigación ante el cambio climático.spa
dc.description.abstractDuring the last decade, the Magdalena River drainage basin has witnessed an increase in erosion rates of 34%, from 550 t km-2 y-1 before 2000 to 710 t km-2 y-1 for the 2000-2010 yr-period, and the average sediment load for the whole basin increased in 44 Mt y-1 for the same period. Sediment yield spatial analysis indicated that 78% of the catchment is under strong erosional conditions due to the clearance of more than 60% of the natural forest between 1980 and 2010. Sediment load simulation by using the BQART, a robust model that combines climatic, morphometric, hydrological, lithologic and human induced variables, and explains 86% of the sediment load variability, indicated that 9% of the combined sediment load during the last three decades was due to deforestation; about 160 Mt have been produced by forest clearance between 2000 and 2010. The trends in economic indicators show that agriculture was the main cause of land-use change and, consequently, of forest loss within the basin. Soil deterioration and increasing trends in erosion require capacity building in environmental governance in addition to climate change mitigation policies.eng
dc.format.extent18 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleEl impacto de la deforestación en la erosión de la cuenca del río Magdalena (1980-2010)spa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesAhnert, F. 1970. Functional relationships between denudation, relief and uplift in large mid-latitude drainage basins. American Journal of Science 268: 243-263.spa
dcterms.referencesAhnert, F. 1984. Local relief and the height limits of mountain ranges. American Journal of Science. 284: 1035-1055.spa
dcterms.referencesBonachea, J., Viola, M., Bruschi, M.A., Hurtado, L., Forte, L.M., da Silva, M., Etcheverry, R., Cavallotto, J., Marcilene, F., Dantas, O., Lázaro, V., Zuquette, MA., Bezerra, O., Remondo, J., Rivas, V., Gómez-Arozamena, J., Fernández, G., Cendrero, A. 2010. Natural and human forcing in recent geomorphic change; case studies in the Rio de la Plata basin. Science of the Total Environment. 408: 2674-2695.spa
dcterms.referencesBruijnzeel, L. 1990. Hydrology of moist tropical forest and effects of conversion: a state of the knowledge. UNESCO: 224.spa
dcterms.referencesCarmona, A.M., Poveda, G. 2014. Detection of long-term trends in monthly hydro-climatic series of Colombia through Empirical Mode Decomposition. Climate Change. doi 10.1007/s/10584-013-1046-3.spa
dcterms.referencesCendrero, A., Rivas, V., Remondo, J. 2004.Influencia humana sobre los procesos geológicos superficiales; consecuencias ambientales. En Naredo, J,M., Ed., Incidencia de la especie humana sobre la Tierra. Colección Economía y Naturaleza, Fundación César Manrique, Lanzarote.spa
dcterms.referencesCendrero, A., Remondo, J., Bonachea, J., Rivas, V., Soto J. 2006. Sensitivity of landscape evolution and geomorphic processes to direct and indirect human influence. Geogr Fis Geodin Quatern. 29: 125-137.spa
dcterms.referencesDouglas, I. 1967. Man, vegetation and the sediment yield of rivers. Nature. 215: 925-928.spa
dcterms.referencesDunne, T. 1979. Sediment yield and land use in tropical catchments. Journal of Hydrology. 42: 281-300.spa
dcterms.referencesEJA-Environmental Justice Atlas. 2014. http://ejatlas.org/.spa
dcterms.referencesEPI-Environmental Performance Index. 2014. http://epi.yale. edu/epi.spa
dcterms.referencesFood and Agriculture Organization of the United Nations (FAO). 2010. State of the World’s forests 2009. Food and Agriculture Organization of the United Nations, Report. 117.spa
dcterms.referencesFerretti-Gallon, K., Busch, J. 2014. What drives deforestation and what stops it? A meta-analysis of spatially explicit econometric studies. Center for Global Development Working Paper. 361.spa
dcterms.referencesFournier, F. 1960. Climat et erosion: la relation entre l’erosion du sol par l’eau et les précipitations atmosphériques. Presse Universitaire de France. 201.spa
dcterms.referencesGeist, H.J., Lambin, E.F. 2002. Proximate causes and underlying driving forces of tropical deforestation. Bioscience. 52: 143-150.spa
dcterms.referencesGWF-Global Forest Watch. 2014. http://www.globalforestwatch. org/.spa
dcterms.referencesHarrison, C.G.A. 2000. What factor controls mechanical erosion rates? International Journal in Earth Sciences. 531.spa
dcterms.referencesHiggitt, D., Lu, X. 2001a. Sediment delivery to the three gorges: 1. Catchment controls. Geomorphology. 41: 143-156.spa
dcterms.referencesHiggitt, D., Lu, X. 2001b. Sediment delivery to the three gorges: 2. Local response. Geomorphology. 41: 157-169.spa
dcterms.referencesHoleman, J.N. 1968. Sediment yield of major rivers of the world. Water Resources Research. 4: 737-747.spa
dcterms.referencesHovius, N. 1998. Controls on sediment supply by large rivers. En: Relative Role of Eustasy, Climate, and Tectonism in Continental Rocks. SEPM (Society of Sedimentary Geology) Special Publication. 59: 3-16.spa
dcterms.referencesHoyos, N., Escobar, J., Restrepo, J.C., Arango, A.M., Ortiz, J. 2013. Impact of the 2010–2011 La Niña Phenomenon in Colombia, South America: The human toll of an extreme weather event. Appl. Geogr. 39: 16-25.spa
dcterms.referencesInstituto de Hidrología, Meteorología, y Estudios Ambientales- IDEAM. 2011. Memoria técnica de la cuantificación de la deforestación histórica nacional -escalas gruesa y fina. Instituto de Hidrología, Meteorología, y Estudios Ambientales-IDEAM. 91.spa
dcterms.referencesJansson, M.B. 1982. Land erosion by water in different climates. Uppsala, Ungi Rapport 57, Department of Physical Geography, Uppsala University. 151.spa
dcterms.referencesJansen, J.M.L., Painter, R.B. 1974. Predicting sediment yield from climate and topography. Journal of Hydrology. 21: 371-380.spa
dcterms.referencesKettner, A., Restrepo, J.D., Syvitski, J.P.M. 2010. Simulating spatial variability of sediment fluxes in an Andean drainage basin, the Magdalena River. Journal of Geology. 118: 363-379.spa
dcterms.referencesKjerfve, B., Wiebe, W., Restrepo, J.D., Kremer, H., Salomons, W. 2002. CariBas – The Caribbean Basins Perspective. En: Kjerfve, B., Kremer, H., Salomons, W., Crossland, J.M. Eds. CariBas – Activities in River Catchments and their Impacts on Coastal Systems in the Caribbean. LOICZ- IGBP Report. 27: 3-28.spa
dcterms.referencesKrishnaswamy, J., Halpin, D., Ritcher, D. 2001. Dynamics of sediment discharge in relation to land-use and hydro- climatology in a humid tropical watershed in Costa Rica. Journal of Hydrology. 253: 91-109.spa
dcterms.referencesLangbein, W.B., Schumm, S.A. 1958. Yield of sediment in relation to mean annual precipitation. Transactions of the American Geophysical Union. 39: 1076-1084.spa
dcterms.referencesLudwig, W., Probst, J. 1998. River sediment discharge to the oceans: Present controls and global budgets. American Journal of Science. 298: 265-295.spa
dcterms.referencesMeybeck, M. 2002. Water quality in river systems. En: Goudie, D., Ed., Environmental Change and Human Society. Oxford University Press.spa
dcterms.referencesMilliman, J.D., Syvitski, J.P.M. 1992. Geomorphic/tectonic control of sediment transport to the ocean: the importance of small mountainous rivers. Journal of Geology. 100: 525-544.spa
dcterms.referencesOhmori, H. 1983. Erosion rates and their relation to vegetation from view point of world-wide distribution. Bulletin of the Department of Geography-University of Tokyo. 15: 77-91.spa
dcterms.referencesPinet, P., Souriau, M. 1988. Continental erosion and large-scale relief. Tectonics. 7: 563-582.spa
dcterms.referencesRestrepo, J.D., Kjerfve, B. 2000a. Water discharge and sediment load from the western slopes of the Colombian Andes with focus on Rio San Juan. Journal of Geology. 108: 17-33.spa
dcterms.referencesRestrepo, J.D., Kjerfve, B. 2000a. Water discharge and sediment load from the western slopes of the Colombian Andes with focus on Rio San Juan. Journal of Geology. 108: 17-33.spa
dcterms.referencesRestrepo, J.D., Kjerfve, B. 2002. River Discharge, Sediment Load, and Sediment Yield Estimates for the Magdalena River and Other Caribbean Rivers of Colombia: Environmental Implications. En: Kjerfve, B., Kremer, H., Salomons, W., Crossland, J.M., Eds., CariBas - Activities in River Catchments and their Impacts on Coastal Systems in the Caribbean. LOICZ-IGBP Report. 27: 86-97.spa
dcterms.referencesRestrepo, J.D. 2005. Los Sedimentos del Río Magdalena: Reflejo de la Crisis Ambiental. Fondo Editorial Universidad EAFIT. 267.spa
dcterms.referencesRestrepo, J.C., Restrepo, J.D. 2005. Efectos Naturales y Antrópicos en la Producción de Sedimentos en la Cuenca del Río Magdalena. Revista Academia Colombiana de Ciencias Físicas, Exactas y Naturales. 29: 239-254.spa
dcterms.referencesRestrepo, J.D., Syvitski, J.P.M. 2006. Assessing the Effect of Natural Controls and Land Use Change on Sediment Yield in a Major Andean River: The Magdalena Drainage Basin, Colombia. Ambio: a Journal of the Human Environment. 35: 44-53.spa
dcterms.referencesRestrepo, J.D., Kjerfve, B., Restrepo, J.C., Hermelin, M. 2006a. Factors Controlling Sediment Yield from a Major South American Drainage Basin: The Magdalena River, Colombia. Journal of Hydrology. 316: 213-232.spa
dcterms.referencesRestrepo, J.D., Zapata, P., Díaz, J.M., Garzón, J., García, C. 2006b. Fluvial Fluxes into the Caribbean Sea and their Impact on Coastal Ecosystems: The Magdalena River, Colombia. Global and Planetary Change. 50: 33-49.spa
dcterms.referencesRestrepo, J.D. 2008. Applicability of LOICZ Catchment-Coast Continuum in a Major Caribbean Basin: The Magdalena River, Colombia. Estuarine, Coastal and Shelf Science. 77: 214-229.spa
dcterms.referencesRestrepo, J.D., López, S.A., Restrepo, J.C. 2009. Geomorphic factors controlling sediment yield in the Andean rivers of Colombia. Latin American Journal of Sedimentology and Basin Analysis. 16: 79-92.spa
dcterms.referencesRestrepo, J. D. 2012. Assessing the effect of sea-level change and human activities on a major delta on the Pacific coast of northern South America: The Patía River. Geomorphology. doi:10.1016/j.geomorph.2012.02.004.spa
dcterms.referencesRestrepo, J.D., Kettner, A. 2012. Human induced discharge diversion in a tropical delta and its environmental implications: the Patía River, Colombia. Journal of Hydrology. 424: 124-142.spa
dcterms.referencesRestrepo, J.D. 2013.The perils of human activity on South American deltas: Lessons from Colombia’s experience with soil erosion. En: Deltas: Landforms, Ecosystems and Human Activities. En Proceedings of HP1, IAHS-IAPSO- IASPEI Assembly, IAHS Publ. 358.spa
dcterms.referencesRestrepo, J., Ortíz, J.C., Pierini, J., Schrottke, K., Maza, M., Otero, L., Aguirre, J. 2014. Freshwater discharge into the Caribbean Sea from the rivers of Northwestern South America (Colombia): Magnitude, variability and recent changes. Journal of Hydrology. 509: 266-281.spa
dcterms.referencesRevenga, C., Brunner, J., Henninger, N., Kassem, K., Payne, R. 2000. Pilot Analysis of Global Ecosystems: Freshwater Systems. World Resource Institute, 65. http://www.wri.org/ wr2000.spa
dcterms.referencesRivas, V., Cendrero, A., Hurtado, M., Cabral, M., Giménez, J., Forte, L., del Río, L., Cantú, M., Becker, A. 2006. Geomorphic consequences of urban development and mining activities; an analysis of study areas in Spain and Argentina. Geomorphology. 73: 185-206.spa
dcterms.referencesSánchez-Triana, E., Ahmed, K., Awe, Y. 2007. Prioridades ambientales para la reducción de la pobreza en Colombia: un análisis ambiental del país para Colombia. Informe del Banco Mundial, Direcciones para el desarrollo, medio ambiente y desarrollo sustentable. Report No. 38610: 522.spa
dcterms.referencesSyvitski, J. 2003. Supply and flux of sediment along hydrological pathways: Research for the 21st century. Global and Planetary Change. 810: 1-11.spa
dcterms.referencesSyvitski, J.P.M., Milliman, J.D. 2007. Geology, Geography, and Humans Battle for Dominance over the Delivery of Fluvial Sediment to the Coastal Ocean. The Journal of Geology. 115: 1-19.spa
dcterms.referencesSyvitski, J.P.M., Kettner, A.J. 2011. Sediment Flux and the Anthropocene. Philosophical Transactions of the Royal Society. 369: 957-975.spa
dcterms.referencesStallard, R. 1988. Weathering and erosion in the humid tropics. En: Lerman, A., Meybeck, M., Eds., Physical and Chemical Weathering in Geochemical Cycles. Kluwer Academic Publishers: p. 225-246.spa
dcterms.referencesSummerfield, M.A., Hulton, N.J. 1994. Natural controls of fluvial denudation in major world drainage basins. Journal of Geophysical Research. 99: 13871-13884.spa
dcterms.referencesYue, S., Pilon, P., Cavadias, G. 2002. Power of the Mann– Kendall and Spearman’s rho test to detecting monotonic trends in hydrological series. Journal of Hydrology. 259: 254-271.spa
dcterms.referencesVerstraeten, G., Poesen, J. 2001. Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate. Geomorphology. 40: 123-144.spa
dcterms.referencesVerstraeten, G., Poesen, J., de Vente, J., Koninckx, X. 2003. Sediment yield variability in Spain: A quantitative and semiqualitative analysis using reservoir sedimentation rates. Geomorphology. 50: 327-348.spa
dcterms.referencesVörösmarty, C.J., Meybeck, M. 2000. Riverine transport and its alteration by human activities. IGBP Newsletter. 39: 24-29.spa
dcterms.referencesWalling, D.E. 1999. Linking land use, erosion and sediment yields in river basins Hydrobiologia. 410: 223-240.spa
dcterms.referencesWalling, D.E., Fang, D. 2003. Recent trends in suspended sediment loads of the world´s rivers. Global and Planetary Change. 39: 111-126.spa
dcterms.referencesWilson, L. 1973. Variations in mean annual sediment yield as a function of mean annual precipitation. American Journal of Science. 273: 335-349.spa
dcterms.referencesYang, S.L., Zhao, Q.Y., Baelkin, I.M. 2002. Temporal variation in the sediment load of the Yangtze River and the influences of human activities. Journal of Hydrology. 263: 56-71.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.141-
dc.subject.proposalRío Magdalenaspa
dc.subject.proposalMagdalena Rivereng
dc.subject.proposalDeforestacionspa
dc.subject.proposalDeforestationeng
dc.subject.proposalTransporte de sedimentosspa
dc.subject.proposalSediment loadeng
dc.subject.proposalErosiónspa
dc.subject.proposalErosioneng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume39spa
dc.relation.citationstartpage250spa
dc.relation.citationendpage267spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.coverage.regionRío Magdalena, Colombia-
dc.relation.citationissue151spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
9. El impacto de la deforestación en la erosión de la cuenca del río Magdalena.pdfCiencias de la tierra1.21 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons