Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/863 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDaza, Jorge I.-
dc.contributor.authorde Brito Brandão, Pedro F.-
dc.contributor.authorBurgos, Ana E.-
dc.date.accessioned2021-10-15T19:42:39Z-
dc.date.available2021-10-15T19:42:39Z-
dc.date.issued2015-09-12-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/863-
dc.description.abstractEn este trabajo se describe la preparación y caracterización de los compuestos de inclusión entre el ligante 2-acetilpiridina tiosemicarbazona (HAPTSC) y los complejos cloruro de bis(2-acetilpiridina tiosemicarbazona) rodio(III), [Rh(HAPTSC)2]Cl3, y cloruro de bis(2- acetilpiridina tiosemicarbazona)níquel(II), [Ni(HAPTSC)2] Cl2, con β-ciclodextrina (βCD) como estrategia para mejorar la solubilidad y la actividad antimicrobiana de estos compuestos. Estos compuestos fueron preparados en razón molar 1:1 entre el respectivo compuesto y la βCD. Fueron caracterizados por espectroscopia de resonancia magnética nuclear protónica y carbono-13 (RMN 1H, 13C), espectroscopia de absorción en la región de infrarrojo (IR), análisis térmico (DTA/DSC) y difracción de rayos X en polvo (DRX). Los resultados obtenidos a través de estas técnicas indican la formación de los compuestos de asociación y/o inclusión parcial entre el ligante y los complejos metálicos de Rh(III) y Ni(II) con βCD. Se realizaron ensayos antimicrobianos de los complejos metálicos incluidos, como también de los compuestos libres frente a bacterias Gram-negativas (Escherichia coli, Pseudomonas aeruginosa) y Gram-positivas (Staphylococcus aureus, Bacillus subtilis) y dos levaduras (Candida albicans y Saccharomyces cerevisiae). La comparación de la actividad antimicrobiana de los complejos incluidos en βCD con la actividad de los compuestos libres mostró que para el ligante incluido la actividad aumentó contra S. aureus, mientras que para el compuesto de inclusión de Rh(III) aumentó contra P. aeruginosa.spa
dc.description.abstractIn this paper the preparation and characterization of inclusion compounds between 2-acetylpyridine thiosemicarbazone ligand (HAPTSC) and the complexes bis(2-acetylpyridine thiosemicarbazone)rhodium(III) chloride, [Rh(HAPTSC)2 ]Cl3 , and bis (2-acetylpyridine thiosemicarbazone)nickel(II) chloride, [Ni(HAPTSC)2 ] Cl2 , with β-cyclodextrin (βCD) as a strategy to improve the solubility and antimicrobial activity of these compounds. These compounds were prepared in a molar ratio 1:1 between the respective compound and βCD, and characterized by protonic nuclear magnetic resonance and carbon-13 (NMR 1 H, 13C) spectroscopy, absorption in the infrared (IR) region spectroscopy, thermal analysis (DTA/DSC) and X-ray diffraction in powder (XRD). The results obtained through these techniques indicate the formation of association compounds and/or partial inclusion between the ligant and the Rh(III) and Ni(II) metal complexes with βCD. Antimicrobial assays were carried out with the enclosed metal complexes and the free compounds against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus, Bacillus subtilis) bacteria and two yeast (Candida albicans and Saccharomyces cerevisiae). The comparison of the antimicrobial activity of the βCD enclosed complex with the activity of the free compounds showed that the enclosed ligant increased its activity against S. aureus, whereas the enclosed Rh(III) compound increased its activity against P. aeruginosa.eng
dc.format.extent11 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titlePreparación y caracterización de compuestos de inclusión entre Rh(III), Ni(II), 2-acetil piridina tiosemicarbazonas y β-ciclodextrinaspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesAnderson, F.E., Duca, C.J., & Scudi, J.V. (1952) Some heterocyclic thiosemicarbazones. Journal of the American Chemical Society. 73: 4967-4968spa
dcterms.referencesBeraldo, H. (2004) Semicarbazonas e tiossemicarbazonas: o amplio perfil farmacológico e usos clínicos. Química Nova. 27 (3): 461-471.spa
dcterms.referencesBeraldo, H., & Gambino D. (2004). The wide pharmacological versatility of thiosemicarbazones, semicarbazones and their metal complexes. Mini Reviews in Medicinal Chemistry. 4 (1): 31-39.spa
dcterms.referencesBurgos, A.E., & Sinisterra, R.D. (2010) Preparación y carac-terización de compuestos de asociación entre el acetato, propionato y butirato de rodio(II) con β-ciclodextrina. Revista Colombiana de Química. 39: 427-445.spa
dcterms.referencesBurgos, A.E., Belchior, J.C., & Sinisterra, R.D. (2002) Controlled release of rhodium(II) carboxylates and their association complexes with cyclodextrins from hydroxyapatite matrix. Biomaterials. 23 (12): 2519-2526.spa
dcterms.referencesBurgos, A.E., Okio, C.K.Y.A., Sinisterra, R.D. (2012) Preparação do composto de associação entre citrato de ródio(II) e β-ciclodextrina. Quimica Nova. 35 (4): 762-765.spa
dcterms.referencesCalderini, A., & Pessine, F.B.T. (2008) Synthesis and charac-terization of inclusion complex of the vasodilator drug minoxidil with b-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 60 (3-4): 369-377spa
dcterms.referencesDa Silva, A.M.M., Empis, J.M.A., & Teixeira-Dias, J.J.C. (2002) Inclusion of carvone enantiomers in cyclomaltoheptaose (β-cyclodextrin): thermal behaviour and H→D and D→H exchange. Journal of Carbohydrate Research. 337 (24): 2501-2504.spa
dcterms.referencesDe Sousa, F., Leite, A., Lula, I., Nascimento, C., Fernandes, N., Lima, A., De Almeida, W., & Sinisterra, R.D. (2008) Supramolecular Self-Assembly of Cyclodextrin and Higher Water Soluble Guest: Thermodynamics and Topological Studies. Journal of the American Chemical Society. 130 (26): 8426-8436.spa
dcterms.referencesDel Valle, E.M.M. (2004) Cyclodextrins and their uses: a review. Process Biochemistry. 39 (9): 1033-1046.spa
dcterms.referencesGiordano, F., Novak, C., & Moyano, J.R. (2001) Thermal analysis of cyclodextrins and their inclusion compounds. Thermochimica Acta. 380 (2): 123-151.spa
dcterms.referencesGupta, S.P. (1994) Quantitative structure-activity relationship studies on anticancer drugs. Chemistry Reviews. 94 (6): 1507-1551.spa
dcterms.referencesInoue, Y. (1993) NMR Studies of the structure and properties of cyclodextrins and their inclusion complexes. Annual Reports on NMR Spectroscopy. 27: 59-101.spa
dcterms.referencesKasuga, N.C., Sekino, K., Koumo, C., Shimada, N., Ishikawa, M., & Nomiya, K. (2001) Synthesis, structural characterization and antimicrobial activities of 4- and 6-coordinate nickel(II) complexes with three thiosemicarbazones and semicarbazone ligands. Journal of Inorganic Biochemistry. 84 (1-2): 55-65.spa
dcterms.referencesKayaci, F., Ertas, Y., & Uyar, T. (2013a) Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofiber. Journal of Agricultural and Food Chemistry. 61 (34): 8156-8165.spa
dcterms.referencesKayaci, F., Umu, O.C.O., Tekinay, T., & Uyar, T. (2013b) Antibacterial Electrospun Poly(lactic acid) (PLA) Nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes. Journal of Agricultural and Food Chemistry. 61 (16): 3901-3908.spa
dcterms.referencesKettel, M.J., Schaefer, K., Groll, J., & Moeller, M. (2014) Nanogels with high active β-cyclodextrin content as physical coating system with sustained release properties. ACS Applied Materials & Interfaces. 6 (4): 2300-2311.spa
dcterms.referencesKlayman, D.L., Bartosevich, J.F., Griffin, T.S., Mason, C.J., & Scovill, J.P. (1979) 2-Acetylpyridine thiosemicarbazones. 1. A new class of potential antimalarial agents. Journal of Medical Chemistry. 22 (7): 855-862.spa
dcterms.referencesKohata, S., Jyodoi, K., & Ohyoshi, A. (1993) Thermal decomposi-tion of cyclodextrins (a-, β-, g-, and modified β-CD) complexes in the solid phase. Thermochimica Acta. 217: 187-198.spa
dcterms.referencesKovala-Demertzi, D., Demertzis, M.A., Miller, J.R., Papadopoulou, C., Dodorou, C., & Filousis, G. (2001) Platinum(II) complexes with 2-acetyl pyridine thiosemicarbazone. Synthesis, crystal structure, spectral properties, antimicrobial and antitumour activity. Journal of Inorganic Chemistry. 86 (2-3): 555-563.spa
dcterms.referencesKrishnan, K., Prathiba, K., Jayaprakash, V., Basu, A., Mishra, N., Zhou, B., Hu, S., & Yen, Y. (2008) Synthesis and ribonucleotide reductase inhibitory activity of thiosemicarbazones. Bioorganic and Medicinal Chemistry Letters. 18 (23): 6248-6250.spa
dcterms.referencesLobana, T.S., Sharma, R., Bawa, G., & Khanna, S. (2009) Bonding and structure trends of thiosemicarbazone derivatives of metals-An overview. Coordination Chemistry Reviews. 253 (7-8): 977-1055.spa
dcterms.referencesOffiong, E., & Martelli, S. (1997) Stereochemistry and antitumour activity of platinum metal complexes of 2-acetylpyridine thiosemicarbazones. Transition Metal Chemistry. 22 (3): 263-269.spa
dcterms.referencesPoveda, A., & Jiménez-Barbero, J. (1998) NMR studies of carbohydrate–protein interactions in solution. Chemical Society Reviews. 27 (2): 133-144.spa
dcterms.referencesReis, D.C., Pinto, M.C.X., Souza-Fagundes, E.M., Wardell, S.M.S.V., Wardell, J.L., & Beraldo, H. (2010) Antimony(III) complexes with 2-benzoylpyridine-derived thiosemicarbazones: cytotoxicity against human leukemia cell lines. European Journal of Medicinal Chemistry. 45 (9): 3904-3910.spa
dcterms.referencesRibero, L., Carvalho, R.A., Ferreira, C.D., & Veiga, F.J.B. (2005) Multicomponent complex formation between vinpocetine, cyclodextrin, tartaric acid and water-soluble polymers monitored by NMR and solubility studies. European Journal of Pharmaceutical Sciences. 24 (1): 1-13.spa
dcterms.referencesSharma, V.K., Srivastava, S., & Srivastava, A. (2007) Spectroscopic, thermal and biological studies on some trivalent ruthenium and rhodium NS chelating thiosemicarbazone complexes. Bioinorganic Chemistry and Applications, 2007, 68374.spa
dcterms.referencesSinisterra, R.D., Shastri, V.P., Najjar, R., & Langer, R. (1999) Encapsulation and release of rhodium(II) citrate and its association complex with hydroxypropyl-b-cyclodextrin from biodegradable polymer microspheres. Journal of Pharmaceutical Sciences. 88 (5): 574-576.spa
dcterms.referencesSkoog, D.A., Holler, F.J., & Nieman, T.A. (2001) Principios de análisis instrumental. (pp. 353-364). Madrid (España): McGraw Hill.spa
dcterms.referencesSteiner, T., & Koellner, G. (1994) Crystalline Beta-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by X-ray diffraction. Journal of the American Chemical Society. 116 (12): 5122-5128.spa
dcterms.referencesSzejtli, J. (1998) Introduction and general overview of cyclodextrin chemistry. Chemical Reviews. 98 (5): 1743-53.spa
dcterms.referencesTamayo, L.V., Burgos, A.E., & Brandão, P.F.B. (2014) Synthesis, characterization, and antimicrobial activity of the ligand 3-methylpyrazole-4-carboxaldehyde thiosemicarbazone and its Pd(II) complex. Phosphorus, Sulfur, and Silicon and the Related Elements. 189 (1): 52-59.spa
dcterms.referencesTenório, R.P., Góes, A.J.S., de Lima, J.G., de Faría, A.R., Alves, A.J., & de Aquino, T.M. (2005) Tiossemicarbazonas: métodos de obtenção, aplicações sintéticas e importância biológica. Química Nova. 28 (6): 1030-1037.spa
dcterms.referencesWenz, G. (1994) Cyclodextrins as building blocks for supra-molecular structures and functional units. Angewandte Chemie International Edition in English. 33 (8): 803-822.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.204-
dc.subject.proposalComplejos de Rh(III)spa
dc.subject.proposalComplexes of Rh(III)eng
dc.subject.proposalComplejos de Ni(II)spa
dc.subject.proposalComplexes of Ni(II)eng
dc.subject.proposalCiclodextrinasspa
dc.subject.proposalCyclodextrinseng
dc.subject.proposal2-acetilpiridina tiosemicarbazonaspa
dc.subject.proposal2-acetylpyridine thiosemicarbazoneeng
dc.subject.proposalActividad antimicrobianaspa
dc.subject.proposalBiological activityeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume39spa
dc.relation.citationstartpage328spa
dc.relation.citationendpage338spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameDepartamento de Química,Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue152spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
4. Preparación y caracterización de compuestos de inclusión.pdfCiencias químicas2.36 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons