Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/865 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCáceres, Silvia M.-
dc.contributor.authorSánchez Muñoz, Juan A.-
dc.date.accessioned2021-10-15T19:45:15Z-
dc.date.available2021-10-15T19:45:15Z-
dc.date.issued2015-09-12-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/865-
dc.description.abstractThe Caribbean coral community structure is changing, particularly species dominance. The Acropora die-off, at many southern and western Caribbean reefs, has allowed the branching scleractinian coral Undaria tenuifolia Dana to become one of the dominant species in these shallow reefs. In this study, colonies of U. tenuifolia were followed for a year using digital imagery. We developed a size class model that allowed us to estimate population fluctuation and growth strategies (colony growth rates and clonal processes). Growth rates varied with colony size; mid-sized colonies doubled their size in a year, while larger colonies often undergo fission. The clonal strategies, i.e., fusion and fission, allow U. tenuifolia to compensate for the low survival rates of early larval post-settlement thus being able to become a dominant coral species in the current reef scenario. The size matrix model formulated on the basis of a relative colony growth rate offered a practical approach for a short-term observation situation, generating a “timeinvariant” transition model. Mortality patterns were not correlated to size classes and were variable by location and time. Overall, population abundance was stable over the monitored period of time. The high survivorship of U. tenuifolia after clonal fragmentation, as well as its high growth rate, suggests that this is a potential species to be cultured, which could be a solution given that this species has become the most common coral being extracted and sold as a souvenir in Cartagena, Colombia.eng
dc.description.abstractLa estructura de las comunidades coralinas del mar Caribe está cambiando, sobre todo en cuanto a especies dominantes. Particularmente la mortandad de Acropora , en muchos arrecifes del sur y oeste del Caribe, ha permitido que el coral escleractínio Undaria tenuifoliaDana se convierta en una de las especies dominantes en los arrecifes someros. En este estudio, se le hizo seguimiento a colonias de U. tenuifolia , durante un año mediante el uso de imágenes digitales. Se desarrolló un modelo de clases de tamaño que permite estimar la fluctuación poblacional y determinar la estrategia de crecimiento. El modelo de clases de tamaño calcula las tasas de crecimiento de las colonias así como los procesos clonales. La clase de tamaño de la colonia afecta la estrategia de crecimiento de esta, donde colonias medianas pueden duplicar su tamaño en un año mientras las colonias más grandes generalmente se dividen. Las estrategias clonales, e.g., fisión y fusión, observadas durante el período de estudio, le permiten a U. tenuifoliasobreponerse a las bajas tasas de sobrevivencia del asentamiento post-larval, además de convertirla en una especie de coral dominante. La matriz del modelo de tamaños formulado a partir del crecimiento relativo de la colonia ofrece un enfoque práctico para observaciones a corto plazo, generando a su vez un modelo de transición “invariante en el tiempo”. Los patrones de mortalidad no se correlacionaron con clases de tamaño y fueron variables según el lugar y el tiempo. La abundancia total de la población se mantuvo estable durante el período de seguimiento. La alta sobrevivencia de esta especie luego de fragmentación clonal, así como su alta tasa de crecimiento, sugieren que se trata de un coral con potencial de ser cultivado, lo que surge como una solución frente a la extracción y comercialización de esta especie como suvenir en Cartagena, Colombia.spa
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleGrowth strategies of an abundant reef-building coralin the southern Caribbean (Undaria tenuifolia)spa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesAronson R.B., Hilbun N.L., Bianchi T.S., Filley T.R., & Mckee B.A. (2014) Land use, water quality, and the history of coral assemblages at Bocas del Toro, Panama. Marine Ecology-Progress Series, 504: 159-170.spa
dcterms.referencesAronson R.B., Macintyre I.G., Precht W.F., Murdoch T.J.T., & Wapnick C.M. (2002a) The expanding scale of species turnover events on coral reefs in Belize. Ecological Monographs, 72: 233-249.spa
dcterms.referencesAronson R.B., Macintyre I.G., Precht W.F., Murdoch T.J.T., & Wapnick C.M. (2002b) The expanding scale of species turnover events on coral reefs in Belize. Ecological Monographs, 72: 233-249.spa
dcterms.referencesAronson R.B., & Precht W.F. (2000) Herbivory and algal dynamics on the coral reef at Discovery Bay, Jamaica. Limnology & Oceanography, 45: 251-255.spa
dcterms.referencesAronson R.B., & Precht W.F. (1995) Landscape patterns of reef coral diversity: a test of the intermediate disturbance hypothesis. Journal of Experimental Marine Biology and Ecology, 192: 1-14.spa
dcterms.referencesAronson R.B., & Precht W.F. (1997) Stasis, biological disturbance, and community structure of a Holocene coral reef. Paleobiology, 23: 326-346.spa
dcterms.referencesAronson R.B., Precht W.F., & Macintyre I.G. (1998) Extrinsic control of species replacement on a Holocene reef in Belize: the role of coral disease. Coral Reefs, 17: 223-230.spa
dcterms.referencesAronson R.B., Precht W.F., Macintyre I.G., & Murdoch T.J.T. (2000) Ecosystems: Coral bleach-out in Belize. Nature, 405: 36-36.spa
dcterms.referencesAronson R.B., Precht W.F., Toscano M.A., & Koltes K.H. (2002c) The 1998 bleaching event and its aftermath on a coral reef in Belize. Marine Biology, 141: 435-447.spa
dcterms.referencesBablet J.P. (1985) Report on the growth of a scleractinia (Fungia paumotensis), In Proceedings 5th International Coral Reef Symposium, Tahiti, pp. 361-365.spa
dcterms.referencesBaker A.C. (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology, Evolution, and Systematics, 34: 661-689.spa
dcterms.referencesBak R.P.M., & Luckhurst B.E. (1980) Constancy and change in coral reef habitats along depth gradients at Curaçao. Oecologia, 47: 145-155.spa
dcterms.referencesBellwood D.R., Hughes T.P., Folke C., & Nystrom M. (2004) Confronting the coral reef crisis. Nature, 429: 827-833.spa
dcterms.referencesBrazeau D.A., & Lasker H.R. (1992) Growth Rates and Growth Strategy in a Clonal Marine Invertebrate, the Caribbean Octocoral Briareum asbestinum. Biological Bulletin, 183: 269-277.spa
dcterms.referencesCadena N.J., & Sánchez J.A. (2010) Colony growth in the harvested octocoral Pseudopterogorgia acerosa in a Caribbean coral reef. Marine Ecology, 31: 566-573.spa
dcterms.referencesCamargo C., Maldonado J., Alvarado E., Moreno-Sánchez R., Mendoza S., Manrique N., Mogollón A., Osorio J., Grajales A., & Sánchez J.A. (2009) Community involvement in management for maintaining coral reef resilience and biodiversity in southern Caribbean marine protected areas. Biodiversity and Conservation, 18: 935-956.spa
dcterms.referencesCaswell H. (2001) Matrix population models : construction, analysis, and interpretation 2nd ed. Sunderland, Mass.: Sinauer Associates.spa
dcterms.referencesCendales M.H., Zea S., & Díaz J.M. (2002) Geomorfología y unidades ecológicas del complejo de arrecifes de las Islas del Rosario e Isla Barú (Mar Caribe, Colombia). Rev. Acad. Colomb. Cienc, 26: 497-510.spa
dcterms.referencesChadwick-Furman N.E., Goffredo S., & Loya Y. (2000) Growth and population dynamic model of the reef coral Fungia granulosa Klunzinger, 1879 at Eilat, northern Red Sea. Journal of Experimental Marine Biology and Ecology, 249: 199-218.spa
dcterms.referencesClark-Tapia R., Alfonso-Corrado C., Eguiarte L.E., & Molina-Freaner F. (2005) Clonal diversity and distribution in Stenocereus eruca (Cactaceae), a narrow endemic cactus of the Sonoran Desert. American Journal of Botany, 92: 272-278.spa
dcterms.referencesConnolly S.R., & Muko S. (2003) Space pre-emption, size-dependent competition, and the coexistence of clonal growth forms. Ecology, 84: 2979-2988.spa
dcterms.referencesDavies P.S. (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Marine Biology, 101: 389-395.spa
dcterms.referencesDíaz-Pulido G., Sánchez J.A., Zea S., Díaz J.M., & Garzón-Ferreira J. (2004) Esquemas de distribución espacial en la comunidad bentónica de arrecifes coralinos continentales y oceánicos del Caribe colombiano. Revista de la Academia Colombiana de Ciencias, 28: 337-347.spa
dcterms.referencesDullo W.C. (2005) Coral growth and reef growth: a brief review. Facies, 51: 37-52.spa
dcterms.referencesEakin C.M., Morgan J.A., Heron S.F., Smith T.B., Liu G., Alvarez-Filip L., Baca B., Bartels E., Bastidas C., & Bouchon C. (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS One, 5: e13969.spa
dcterms.referencesFong P., & Glynn P.W. (2000) A regional model to predict coral population dynamics in response to El Niño southern oscillation. Ecological Applications, 10: 842-854.spa
dcterms.referencesFoster N.L., Baums I.B., Sanchez J.A., Paris C.B., Chollett I., Agudelo C.L., Vermeij M.J., & Mumby P.J. (2013) Hurricane-driven patterns of clonality in an ecosystem engineer: the Caribbean coral Montastraea annularis. PLoS One, 8: e53283.spa
dcterms.referencesGlynn P.W. (1984) Widespread coral mortality and the 1982–83 El Niño warming event. Environmental Conservation, 11: 133-146.spa
dcterms.referencesGuest J.R., Baird A.H., Maynard J.A., Muttaqin E., Edwards A.J., Campbell S.J., Yewdall K., Affendi Y.A., & Chou L.M. (2012) Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS One, 7: e33353.spa
dcterms.referencesHagedorn M., Pan R., Cox E.F., Hollingsworth L., Krupp D., Lewis T.D., Leong J.C., Mazur P., Rall W.F., MacFarlane D.R., Fahy G., & Kleinhans F.W. (2006) Coral larvae conservation: Physiology and reproduction. Cryobiology, 52: 33-47.spa
dcterms.referencesHighsmith R.C. (1982) Reproduction by fragmentation in corals. Marine Ecology-Progress Series, 7: 207-226.spa
dcterms.referencesHughes R.N. (2005) Lessons in modularity: the evolutionary ecology of colonial invertebrates. Scientia Marina, 69: 169-179spa
dcterms.referencesHughes T.P. (1984) Population Dynamics Based on Individual Size Rather than Age: A General Model with a Reef Coral Example. The American Naturalist, 123: 778.spa
dcterms.referencesHughes T.P., Ayre D., & Connell J.H. (1992) The evolutionary ecology of corals. Trends in Ecology & Evolution, 7: 292-295.spa
dcterms.referencesHughes T.P., Baird A.H., Bellwood D.R., Card M., Connolly S.R., Folke C., Grosberg R., Hoegh-Guldberg O., Jackson J.B.C., Kleypas J., Lough J.M., Marshall P., Nystrom M., Palumbi S.R., Pandolfi J.M., Rosen B., & Roughgarden J. (2003) Climate change, human impacts, and the resilience of coral reefs. Science, 301: 929-933.spa
dcterms.referencesHughes T.P., & Jackson J.B.C. (1980) Do Corals Lie About Their Age? Some Demographic Consequences of Partial Mortality, Fission, and Fusion. Science, 209: 713-715.spa
dcterms.referencesHughes T.P., Jackson J.B.C. (1985) Population Dynamics and Life Histories of Foliaceous Corals. Ecological Monographs, 55: 141-166.spa
dcterms.referencesHume B., Angelo C. D’, Burt J., Baker A.C., Riegl B., & Wiedenmann J. (2013) Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: Prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Marine pollution bulletin, 72: 313-322.spa
dcterms.referencesJackson J.B.C. (2001) What was natural in the coastal oceans? Proceedings of the National Academy of Sciences of the United States of America, 98: 5411-5418.spa
dcterms.referencesLaJeunesse T.C. (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Marine Biology, 141: 387-400.spa
dcterms.referencesLamberts A.E. (1978) Coral growth: alizarin method. Coral reefs: research methods. UNESCO, Paris, 523-527.spa
dcterms.referencesLangmead O., Sheppard C. (2004) Coral reef community dynamics and disturbance: a simulation model. Ecological Modelling, 175: 271-290.spa
dcterms.referencesLasker H.R. (1990) Clonal Propagation and Population Dynamics of a Gorgonian Coral. Ecology, 71: 1578–1589spa
dcterms.referencesLasker H.R. (1991) Population growth of a gorgonian coral: equilibrium and non-equilibrium sensitivity to changes in life history variables. Oecologia, 86: 503-509.spa
dcterms.referencesLasker H.R., Boller M.L., Castanaro J., & Sánchez J.A. (2003) Modularity and determinate growth in a gorgonian coral. The Biological Bulletin, 205: 319-330.spa
dcterms.referencesLasker H.R., & Coffroth M.A. (1999) Responses of Clonal Reef Taxa to Environmental Change. American Zoologist, 39: 92-103.spa
dcterms.referencesLasker H.R., & Sánchez J.A. (2002) Allometry and Astogeny of modular organisms, In Reproductive Biology of Invertebrates, pp. 207–253. Ed R. N. Hughes. New York: John Wileyspa
dcterms.referencesLefkovitch L.P. (1965) The study of population growth in organisms grouped by stages. Biometrics, 21: 1-18.spa
dcterms.referencesLópez-Angarita J., Moreno-Sánchez R., Maldonado J.H., Sánchez J.A. (2014) Evaluating Linked Social-Ecological Systems in Marine Protected Areas. Conservation Letters, 7: 241-252.spa
dcterms.referencesMeesters E.H., Hilterman M., Kardinaal E., Keetman M., de Vries M., & Bak R.P.M. (2001) Colony size-frequency distributions of scleractinian coral populations: spatial and interspecific variation. Marine Ecology-Progress Series, 209: 43-54.spa
dcterms.referencesRestrepo J.D., Zapata P., Diaz J.A., Garzon-Ferreira J., & Garcia C.B. (2006) Fluvial fluxes into the Caribbean Sea and their impact on coastal ecosystems: The Magdalena River, Colombia. Global and Planetary Change, 50: 33-49.spa
dcterms.referencesRiegl B., Purkis S.J., Keck J., & Rowlands G.P. (2009) Monitored and modeled coral population dynamics and the refuge concept. Marine Pollution Bulletin, 58: 24-38.spa
dcterms.referencesRinkevich B. (2014) Rebuilding coral reefs: does active reef restoration lead to sustainable reefs? Current Opinion in Environmental Sustainability, 7: 28-36.spa
dcterms.referencesRobbart M.L., Peckol P., Scordilis S.P., Curran H.A., & Brown-Saracino J. (2004) Population recovery and differential heat shock protein expression for the corals Agaricia agaricites and A.tenuifolia in Belize. Marine Ecology-Progress Series, 283: 151-160.spa
dcterms.referencesSánchez J.A. (1995) Benthic communities and geomorphology of the Tesoro Island reefs, Colombian Caribbean. Anales del Instituto de Investigaciones Marinas de Punta Betín, 24: 55-77.spa
dcterms.referencesSebens K.P. (2003) The Ecology of Indeterminate Growth in Animals. Annual Review of Ecology and Systematics, 18: 371-407.spa
dcterms.referencesSebens K.P., Helmuth B., Carrington E., & Agius B. (2003) Effects of water flow on growth and energetics of the scleractinian coral Agaricia tenuifolia in Belize. Coral Reefs, 22: 35-47.spa
dcterms.referencesSoong K. (1991) Sexual reproductive patterns of shallow-water reef corals in Panama. Bulletin of Marine Science, 49: 832-846.spa
dcterms.referencesSoong K., Lang J.C. (1992) Reproductive Integration in Reef Corals. Biol Bull, 183: 418-431.spa
dcterms.referencesTanner J.E. (1997) Interspecific competition reduces fitness in scleractinian corals. Journal of Experimental Marine Biology and Ecology, 214: 19-34.spa
dcterms.referencesVelásquez J., López-Angarita J., & Sánchez J.A. (2011) Evaluation of the FORAM index in a case of conservation. Biodiversity and Conservation, 20: 3591-3603spa
dcterms.referencesVernette G. (1985) La plateforme Continentale Caribe de Colombie (du debouche du Magdalena au Golfe de Morrosquillo). Tesis Doctoral a L’Universite de Bordeaux, Bordeaux.[Links].spa
dcterms.referencesVernette G., Mauffret A., Bobier C., Briceno L., & Gayet J. (1992) Mud diapirism, fan sedimentation and strike-slip faulting, Caribbean Colombian margin. Tectonophysics, 202: 335-349.spa
dcterms.referencesVollmer S.V., & Palumbi S.R. (2006) Restricted Gene Flow in the Caribbean Staghorn Coral Acropora cervicornis: Implications for the Recovery of Endangered Reefs. Journal of Heredity, esl057.spa
dcterms.referencesWilkinson C., & Souter D. (2008) Status of Caribbean Coral Reefs after Bleaching and Hurricanes in 2005. Townsville: Global Coral Reef Monitoring Network, and Reef and Rainforest Research Center.spa
dcterms.referencesYoshioka P.M. (1994) Size-specific life history pattern of a shallow-water gorgonian. Journal of Experimental Marine Biology & Ecology, 184: 111-122.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.195-
dc.subject.proposalAgariciaspa
dc.subject.proposalAgariciaeng
dc.subject.proposalUndaria tenuifoliaspa
dc.subject.proposalUndaria tenuifoliaeng
dc.subject.proposalClonalspa
dc.subject.proposalClonaleng
dc.subject.proposalEstructura comunitariaspa
dc.subject.proposalCommunity structureeng
dc.subject.proposalCrecimiento colonialspa
dc.subject.proposalColonial growth,eng
dc.subject.proposalArrecifes coralinosspa
dc.subject.proposalCoral reefseng
dc.subject.proposalExtracción coralinaspa
dc.subject.proposalCoral extractioneng
dc.subject.proposalMar Caribespa
dc.subject.proposalCaribbean Seaeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume39spa
dc.relation.citationstartpage348spa
dc.relation.citationendpage357spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas,Físicas y Naturalesspa
dc.contributor.corporatenameCurrent address: Department of Medicine, National Jewish health, Denver, CO, USAspa
dc.coverage.regionCaribe Colombiano-
dc.relation.citationissue152spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
6. Growth strategies of an abundant reef-building coral.pdfCiencias naturales2.83 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons