Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/866 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDíaz Cárdenas, Carolina-
dc.contributor.authorBaena, Sandra-
dc.date.accessioned2021-10-15T19:45:56Z-
dc.date.available2021-10-15T19:45:56Z-
dc.date.issued2015-09-12-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/866-
dc.description.abstractLos manantiales salinos terrestres son hábitats con una gran diversidad de especies microbianas, pero el conocimiento de dicha diversidad en el país es escaso. Se seleccionaron tres manantiales salinos ubicados en el sistema montañoso de los Andes colombianos para su estudio en el marco del programa de investigación en ecología y diversidad de manantiales salinos y termales. Estos manantiales, con un contenido total de sólidos disueltos de 20 a 54 g/L, fluyen a partir de aguas subterráneas antiguas y su régimen hidrológico no está directamente relacionado con recargas pluviométricas recientes. Presentaron composiciones fisicoquímicas diferentes: en las muestras de agua provenientes de los manantiales Salado de Consotá y La Cristalina se registró un alto contenido de cloro, sodio y calcio, en tanto que las aguas provenientes del manantial Salpa se caracterizaron por una gran concentración de sodio, potasio y sulfato. La composición de las comunidades bacterianas se analizó con base en diferentes aproximaciones para generar inventarios de diversidad biológica. Los resultados indicaron que los tres manantiales albergan una comunidad bacteriana constituida en su mayoría por organismos Gram-negativos, móviles, heterotróficos y litotróficos, halotolerantes y halófilos, algunos de los cuales han sido reportados previamente en ambientes marinos. La mayoría de los organismos aislados pertenecía a la gamaproteobacteria y alfaproteobacteria, aunque las diferencias en la composición microbiana de cada manantial fueron evidentes. El estudio demostró que estos manantiales son hábitat de nuevas variedades taxonómicas como se deduce de las especies bacterianas caracterizadas.spa
dc.description.abstractTerrestrial saline springs are habitats of a high diversity of microbial species, but knowledge of this diversity is scarce in our country. We have chosen to study three saline springs as part of our research program on the ecology and diversity of halophilic and thermophilic microorganisms. The saline springs are located on the Andes mountain range, their content of total dissolved solids is 20-54 g/L, they flow from ancient groundwater, and their water regime is not directly related to recent rainfall recharges. They exhibited different physicochemical compositions: the water samples from the Salado de Consotá and La Cristalina springs showed a high content of chlorine, sodium and calcium, while those from the Salpa spring were characterized by high concentrations of sodium, potassium and sulfate. The composition of microbial communities was analyzed using different approaches to generate biodiversity inventories. The results indicated that these springs harbor a microbial community made up mostly of Gram-negative, motile, litotrophic, heterotrophic, halotolerant and halophilic microorganisms, some of which have been previously reported in marine environments. Most isolated microorganisms belonged to the Gamma and Alphaproteobacteria classes, but differences in the microbial composition of each spring were evident. Our study revealed that these springs are a source of new taxonomic diversity as shown by the newly characterized bacterial species.eng
dc.format.extent16 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleManantiales salinos: Inventarios de Diversidad Metabólica y filogenética de microorganismos de ambientes salinosspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesAcevedo A, & Martínez S. (2004). La sal y las mercaderías en la provincia de Quimbaya. Primeras noticias y crónicas de los salados del río Consotá. En: C. López y M. Cano (Eds). Cambios ambientales en perspectiva histórica. Ecorregión del Eje Cafetero. Proyecto UTP-GTZ, Pereira. p. 167-187.spa
dcterms.referencesAlfaro C. (2002). Geoquímica del sistema geotérmico de Paipa. Ingeominas, informe inédito. Bogotá. p. 88spa
dcterms.referencesAlexandre, G., Greer-Phillips, S., Zhulin, I.B. (2004). Ecological role of energy taxis in microorganism. FEMS Microbiol Reviews; 28 (1): 113-126.spa
dcterms.referencesAller, J.Y. & Kemp, P.F. (2008). Are Archaea inherently less diverse than Bacteria in the same environments? FEMS Microbiol Ecol; 65 (1): 74-87.spa
dcterms.referencesAndrei, A.S., Banciu, H.L., Oren, A. (2012). Living with salt: Metabolic and phylogenetic diversity of Archaea inhabiting saline ecosystems. FEMS Microbiol Lett 330: 1-9.spa
dcterms.referencesAmerican Public Health Association-American Water Works Association & Water Environment Federation. (2005). Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, D.C.spa
dcterms.referencesArbeláez-Cortés, E. (2013). Knowledge of Colombian biodiversity: Published and indexed. Biodivers Conserv; 22 (12): 2875-2906.spa
dcterms.referencesBaena, S, Fardeau, M.L., Labat, M., Ollivier, B., García, J.L., Patel B.K.C. (1998). Aminobacterium colombiense gen. nov. sp. nov., an amino acid-degrading anaerobe isolated from anaerobic sludge. Anaerobe. 2: 241-250spa
dcterms.referencesBaena, S., Fardeau, M.L., Woo, T.H.S., Ollivier, B., Labat, M., Patel, B.K.C. (1999a). Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, “Selenomonas acidaminophila” and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences, and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov. and Anaeromusa acidaminophila gen. nov., comb. nov. Int J Syst Evol Microbiol. 49: 969-974spa
dcterms.referencesBaena, S., Fardeau, M.L., Labat, M., Ollivier, B., Thomas, P., Patel, B.K.C. (1999b) Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid utilizing bacterium. Int J Syst Evol Microbiol. 49: 975-982.spa
dcterms.referencesBaena, S., Perdomo, N., Carvajal, C., Díaz, C., Patel, B.K.C. (2011). Desulfosoma caldarium gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a terrestrial hot spring. Int J Syst Evol Microbiol. 61: 732-736.spa
dcterms.referencesBiebl, H., Allgaier, M., Lünsdorf, H., Pukall, R., Tindall, B.J., Wagner-Döbler, I. (2005). Roseovarius mucosus sp. nov., a member of the Roseobacter clade with trace amounts of bacteriochlorophyll a. Int J Syst Evol Microbiol. 55: 2377-2383.spa
dcterms.referencesBiebl, H., Pukall, D., Lünsdorf, H., Schulz, S., Allgaier, M., Tindall, B., Wagner-Döbler, I. (2007). Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. Int J Syst Evol Microbiol. 57: 1095-1107.spa
dcterms.referencesBohórquez, L.C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., Junca, H., Baena, S., Zambrano, M.M. (2012). In-depth characterization via complementing culture-independent approaches of the microbial community in an acidic hot spring of the Colombian Andes. Microb Ecol. 63: 103-115.spa
dcterms.referencesChun, J. & Rainey, F.A. (2014). Integrating genomics into taxonomic and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol. 64: 316-324.spa
dcterms.referencesClementino, M.M., Vieira, R.P., Cardoso, A.M., Nascimento, A.P.A, Silveira C.B., Riva, T.C., Gonzalez A.S.M., Paranhos, R., Albano, R.M., Ventosa, A., Martins, O.B. (2008). Prokaryotic diversity in one of the largest hypersaline coastal lagoons in the world. Extremophiles. 12: 595-604.spa
dcterms.referencesCortés, L. & Cardona, J.J. (2006). Cartografía geológica detallada para el Salado de Consotá y sus alrededores. En: López, M. Cano y D. Rodríguez (Compiladores). Cambios ambientales en perspectiva histórica. Ecología histórica y cultura ambiental. Universidad Tecnológica de Pereira-Sociedad Colombiana de Arqueología, Pereira. p. 93-109.spa
dcterms.referencesDahle, H., & Birkeland, N.K. (2006). Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int J Syst Evol Microbiol. 56: 1539-1545.spa
dcterms.referencesDelgado-Serrano, L., López, G., Bohórquez, L., Bustos, J.R., Rubiano, C., Osorio-Forero, C., Junca, H., Baena, S., Zambrano, M.M. (2014). Neotropical Andes hot springs harbor diverse and distinct planktonic microbial communities. FEMS Microbiol Ecol. 89: 56-66.spa
dcterms.referencesDenner, E.B.M, Smith, G.W., Busse, H.J., Schumann, P., Narzt, T., Polson, S.W., Lubitz, W., Richardson, L.L. (2003). Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. Int J Syst Evol Microbiol. 53: 1115-1122.spa
dcterms.referencesDíaz, C., Baena, S., Fardeau, M.L., Patel, B.K.C. (2007). Aminiphilus circumscriptus gen. nov., sp. nov., an anaerobic amino-acid-degrading bacterium from an upflow anaerobic sludge reactor. Int J Syst Evol Microbiol. 57: 1914-1918.spa
dcterms.referencesDíaz-Cárdenas, C., López, G., Patel, B.K.C., Baena, S. (2010a). Dethiosulfovibrio salsuginis sp. nov., an anaerobic, slightly halophilic bacterium isolated from a saline spring. Int J Syst Evol Microbiol. 60: 850-853.spa
dcterms.referencesDíaz-Cárdenas, C., Patel, B.K.C., Baena, S. (2010b) Tistlia consotensis gen. nov., sp. nov., a novel aerobic chemohet-erotrophic free-living nitrogen-fixing α-Proteobacteria, isolated from a Colombian saline spring. Int J Syst Evol Microbiol. 60: 1437-1444.spa
dcterms.referencesDíaz-Cárdenas, C. (2011) Estudio de la composición de la comunidad microbiana de manantiales salinos ubicados en los departamentos de Risaralda y Boyacá. Pontificia Universidad Javeriana. Bogotá. p. 255spa
dcterms.referencesDong, H., Zhang, G., Jiang, H., Yu, B., Chapman, L., Lucas, C., Fields, M. (2006). Microbial diversity in sediments of saline Qinghai Lake, China: Linking geochemical controls to microbial ecology. Microbial Ecol. 51: 65-82.spa
dcterms.referencesDuRand, M.D., Olson, R.J., Chisholm, S.W. (2001). Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep Sea Res Part II. 48: 1983-2003.spa
dcterms.referencesElshahed, M., Najar, F., Roe, B., Oren, A., Dewers, T., Krumholz, L. (2004). Survey of Archaeal diversity reveals an abundance of halophilic Archaea in a low-salt, sulfide and sulfur-rich spring. Appl Environ Microbiol. 70 (4): 2230-2239spa
dcterms.referencesGell, P. & Gasse, F. (1990). Relationships between salinity and diatom flora from some Australian saline lakes. 11th International Diatom Symposium. California Academy of Sciences, San Francisco, USA. p. 631-641.spa
dcterms.referencesGanesan, A., Chaussonnerie, S., Tarrade, A., Dauga, C., Bouchez, T., Pelletier, E., Lepaslier, D., Sghir, A. (2008). Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum ‘Synergistetes’, isolated from an anaerobic sludge digester. Int J Syst Evol Microbiol. 58: 2003-2012.spa
dcterms.referencesGlauert, A.M. (1975). Fixation, dehydration and embedding of biological specimens. En Glauert, A.M., (Ed.): Practical methods in electron microscopy. Vol. 3. Part I. North-Holland, Amsterdam. p. 1-207spa
dcterms.referencesGremm, T., & Kaplan, L. (1997). Dissolved carbohydrates in streamwater determined by HPLC and pulsed amperometric detection. Limnology and Oceanography. 42 (2): 385-393spa
dcterms.referencesHungate, R.E. (1969). A roll tube method for cultivation of strict anaerobes. En: Norris, J.R. and Ribbons, D.W. (Eds.). Methods in microbiology, Vol. 3B. Academic Press, London. p. 117-132.spa
dcterms.referencesJoshi, A.A., Kanekar, P.P., Kelkar, A.S., Shouche, Y.S., Vani, A.A., Borgave, S.B., Sarnaik, S.S. (2008). Cultivable bacterial diversity of alkaline Lonar Lake, India. Microbial Ecology. 55: 163-172.spa
dcterms.referencesJumas-Bilak, E., Carlier, J.P., Jean-Pierre, H., Citron, D., Bernard, K., Damay, A., Gay, B., Teyssier, C., Campos, J., Marchandin, H. (2007). Jonquetella anthropi gen. nov,. sp. nov., the first member of the candidate phylum ‘Synergistetes’ isolated from man. Int J Syst Evol Microbiol. 57: 2743-2748.spa
dcterms.referencesJumas-Bilak, E., Roudière, L., Marchandin, H. (2009). Description of ‘Synergistetes’ phyl. nov. and emended description of the phylum ‘Deferribacteres’ and of the family Syntrophomonadaceae, phylum ‘Firmicutes’. Int J Syst Evol Microbiol. 59 (5): 1028-35.spa
dcterms.referencesKirchman, D., Sigda, J., Kapuscinski, R., Mitchell, R. (1982). Statistical analysis of the direct count method for enumerating bacteria. Appl Environm Microbiol. 44: 376-382.spa
dcterms.referencesLaBaugh, JW. (1989). Chemical characteristics of water in northern prairie wetlands. En: Valk AV. Ames (Eds). Northern Prairie Wetlands. Iowa University Press. 57-90.spa
dcterms.referencesLai, Q., Qiao, N., Wu, C., Sun, F., Yuan, J., Shao, Z. (2010). Stappia indica sp. nov., isolated from deep seawater of the Indian Ocean. Int J Syst Evol Microbiol. 60: 733-736.spa
dcterms.referencesLópez, G., Chow, J., Bongen, P., Lauinger, B., Pietruszka, J., Streit, W.R., Baena, S. (2014). A novel thermoalkalostable esterase from Acidicaldus sp. strain USBA-GBX-499 with enantioselectivity isolated from an acidic hot springs of Colombian Andes. Appl Microbiol Biotechnol. 98 (20): 8603-16.spa
dcterms.referencesObernosterer, I. & Herndle, G.J. (1995). Phytoplankton extracellular release and bacterial growth: Dependence on the inorganic N:P ratio. Marine Ecology Progress Series. 116: 247-257.spa
dcterms.referencesPedersen, K., Arlinger, J., Hallbeck, L., Pettersson, C. (1996). Diversity and distribution of subterranean bacteria in groundwater at Oklo in Gabon, Africa, as determined by 16S rRNA gene sequencing. Molecular Ecology. 5: 427-436.spa
dcterms.referencesPernthaler, J., Glöckner, F.O., Schönhuber, W., Amann, R. (2001). Fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes. En: J. Paul (Ed.). Methods in microbiology: Marine microbiology. Academic Press Ltd, San Diego, USA. vol. 30. p. 207-226.spa
dcterms.referencesPerreault, N.N., Andersen, D.T., Pollard, W.H., Greer, C.W., Whyte, L.G. (2007). Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian high Arctic. Appl Environ Microbiol. 73 (5): 1532-1543.spa
dcterms.referencesPrakash, O., Shouche, Y., Jangid, K., Kostka, J.E. (2013). Microbial cultivation and the role of microbial resource centers in the omics era. Appl Microbiol Biotechnol. 97: 51-62.spa
dcterms.referencesRathsack, K., Reitner, J., Stackebrandt, E., Tindall, B.J. (2011). Reclassification of Aurantimonas altamirensis (Jurado, et al., 2006), Aurantimonas ureilytica (Weon, et al., 2007) and Aurantimonas frigidaquae (Kim, et al., 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. Int J Syst Evol Microbiol. 61: 2722-2728.spa
dcterms.referencesRedburn, A.C. & Patel, B.K.C. (1993). Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol Letters. 113: 81-86spa
dcterms.referencesRees, G.N, Patel, B.K.C., Grassia, G.S., Sheehy, A.J. (1997). Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel thermophilic bacterium which ferments citrate. Int J Syst Bacteriol. 47: 150-154.spa
dcterms.referencesRomero, M., Cabrera, E., Ortiz, N. (2008). Informe sobre el estado de la biodiversidad en Colombia 2006-2007. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá D. C., Colombia. p. 181. http://www.humboldt.org.co/download/INSEB_2006-2007.pdf.spa
dcterms.referencesRooney-Varga, J.N., Giewat, M.W., Savin, M.C., Sood, S., LeGresley, M., Martin, J.L. (2005). Links between phytoplankton and bacterial community dynamics in a coastal marine Environment. Microbial Ecology. 49: 163-175.spa
dcterms.referencesRubiano-Labrador, C., Baena, S., Díaz-Cárdenas C., Patel, B.K.C. (2013). Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot spring. Int J Syst Evol Microbiol. 63: 1396-1402.spa
dcterms.referencesRubiano-Labrador, C., Bland, C., Miotello, G., Guerin, P., Pible, O., Baena, S., Armengaud, J. (2014). Proteogenomic insights into salt tolerance by a halotolerant alpha-proteobacterium isolated from an Andean saline spring. Journal of Proteomics. 97: 36-47.spa
dcterms.referencesSalm C.R., Saros, J.E., Martin, C.S., Erickson, J.M. (2009). Patterns of seasonal phytoplankton distribution in prairie saline lakes of the northern Great Plains (U.S.A.). Saline Systems. 5 (1): 1-13.spa
dcterms.referencesSieburth, J.M., Smetacek, V., Lenz, J. (1978). Pelagic ecosystem structure-heterotrophic compartments of plankton and their relationship to plankton size fractions. Limnology and Oceanography. 23: 1256-1263.spa
dcterms.referencesSigee, D.C. (2005). Freshwater Microbiology: Biodiversity and dynamic interactions of microorganisms in the freshwater environment. Primera edición. John Wiley & Sons Ltd., Inglaterra. p. 524.spa
dcterms.referencesSogin, M., Morrison, H., Huber, J., Welch, D.M., Huse, S., Neal, P.R., Arrieta, J., Herndl, G. (2006). Microbial diversity in the deep sea and the underexplored ‘‘rare biosphere’’. PNAS; 103 (32): 12115-12120spa
dcterms.referencesSorokin, D.Y., Tourova, T.P., Spiridonova, E.M., Rainey, F.A., Muyzer, G. (2005). Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. Int J Syst Evol Microbiol; 55: 1069-1075spa
dcterms.referencesSwan, B.K., Ehrhardt, C.J., Reifel, K.M., Moreno, L.I., Valentine, D. (2010). Archaeal and Bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea. App Environ Microbiol. 76 (3): 757-768.spa
dcterms.referencesTanaka, T., Kawasaki, K., Daimon, S., Kitagawa, W., Yamamoto, K., Tamaki, H., Tanaka, M., Nakatsu, C.H., Kamagata, Y. (2014). A hidden pitfall in the preparation of agar media undermines microorganism cultivability. App Environ Microbiol. 80 (24): 7659-7666.spa
dcterms.referencesTistl M. (2004). Sal, cobre y oro en el Consotá. En: López, C, Cano, M. (Eds.) Cambios ambientales en perspectiva histórica. Ecorregión del Eje Cafetero. Universidad Tecnológica de Pereira, Programa Ambiental GTZ. Pereira, Colombia. p. 41-53.spa
dcterms.referencesTorsvik, V., Salte, K., Sørheim, R., Goksøyr, J. (1990). Com-parison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl Environ Microbiol. 56 (3): 776-781spa
dcterms.referencesVartoukian, S., Palmer, R., Wade, W. (2007). The division “Synersgistes”. Anaerobe. 13 (4): 99-106spa
dcterms.referencesVentosa, A., Fernández, A.B., León, M.J., Sánchez-Porro, C., Rodríguez-Varela F. (2014). The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. Extremophiles. 18: 811-824spa
dcterms.referencesWu, Q.L., Zwart, G., Schauer, M., Kamst-van Agterveld M.P., Hahn, M.W. (2006). Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan plateau, China. Appl Environ Microbiol. 72: 5478-5485.spa
dcterms.referencesYeates, C., Saunders, A.M., Crocetti, G.R., Blackall, L.L. (2003). Limitations of the widely used GAM42a and BET42a probes targeting bacteria in the Gammaproteobacteria radiation. Microbiology. 149: 1239-1247.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.199-
dc.subject.proposalManantiales salinosspa
dc.subject.proposalSaline springseng
dc.subject.proposalDiversidad micrpbianaspa
dc.subject.proposalMicrobial diversityeng
dc.subject.proposalBacterias halófitasspa
dc.subject.proposalHalophilic bacteriaeng
dc.subject.proposalHalotolerantesspa
dc.subject.proposalHalotolerant bacteriaeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume39spa
dc.relation.citationstartpage358spa
dc.relation.citationendpage373spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.coverage.regionAndes-
dc.relation.citationissue152spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
7. Manantiales salinos Inventarios de Diversidad Metabólica y filogenética.pdfCiencias naturales2.76 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons